STATS 250 Lab 05 **Scatterplots and Linear** Regression

Nick Seewald nseewald@umich.edu Week of 09/28/2020

Your tasks for the week running Friday 9/25 - Friday 10/2:

Task	Due Date	Submission	
Homework 4	Friday 10/2 8AM ET	course.work	
Lab 5	Friday 10/2 8AM ET	Canvas	

Stop by office hours! You can attend anyone's -- not just mine!

Lab 3 Comments

(Sorry I'm still a bit behind on grading)

- Please be careful to answer all parts of every question!
- When deciding number of breaks for a histogram, try to avoid empty bins.
- Skew direction is which side the tail is on
 - Skew right implies mean > median; skew left implies mean < median
- In Dive Deeper 2, I think we should keep the outlier: there's no reason to believe that William and Mary is fundamentally different from other public schools.
 - "Accuracy" or numerical convenience is not a good reason to eliminate a data point.

Homework 3 Summary

- SHOW WORK. No work = no points 🐯
- Independent events: P(A and B) = P(A)P(B) if and only if A, B are *independent*. Same thing with $P(A \mid B) = P(A)$.
 - This must hold *exactly*: $0.786 \neq 0.75$
- Events can be mutually exclusive, independent, or neither, but *not both*.
 - Use numerical support; don't rely on logic.

Weekly Advice

- R "draws" graphs like ink on paper. Make a graph (e.g., plot()), then use other functions to draw on top of the graph.
 - Because R draws in "ink", there's no eraser! You need to start over by running plot() again.
- The way to get a graphic you like is by trying stuff and adjusting.
- Use R's built-in help for "graphical parameters"! In the console, type **?par**.

Vectors in R (line 59)

- A vector is a way to hold a collection of things in R. Think of it as a pill organizer.
- We can make vectors using the c() function. c here stands for combine.

x <- c(1, 72.15, -4) x

[1] 1.00 72.15 -4.00

stringsAsFactors (line 70)

penguins <- read.csv("https://raw.githubusercontent.com/STATS250SBI/palmerpenguins/master/inst/extda stringsAsFactors = T)

- We've got an extra argument to read.csv() called stringsAsFactors.
- Tells read.csv() that it should treat data that looks like text as a categorical variable.
- In STATS 250, text-like data will almost always be a categorical variable, so we'll be setting stringsAsFactors = TRUE often.

Scatterplots Revisited (line 82)

```
plot(bill_depth_mm ~ body_mass_g,
    data = penguins,
    main = "Scatterplot of Penguin Body Mass
    xlab = "Bill Depth (mm)",
    ylab = "Body Mass (g)")
```

Notice:

- 1. "Formula syntax": We specified y ~
 x in the plot() code.
- 2. Pretty obvious clustering here! What could be the reason for this?

Bill Depth (mm)

8/21

Scatterplots: Color-Coding Points (line 97)

```
plot(bill_depth_mm ~ body_mass_g,
    data = penguins,
    main = "Scatterplot of Penguin Body Mass v
    xlab = "Bill Depth (mm)",
    ylab = "Body Mass (g)",
    col = c("midnightblue", "brown1", "mediums
```

- Set **col** argument to a vector of colors
- Use [] to select color based on categorical variable
- Use color with restraint

Scatterplot of Penguin Body Mass vs. Bill Depth

Color Should Have Meaning

This looks fun, but what does the color *mean*?

Color should convey information, and enhance readability.

Adding Legends to Plots (line 118)

```
# Make the plot again
plot(bill_depth_mm ~ body_mass_g,
    data = penguins,
    main = "Scatterplot of Penguin Body Mass v
    xlab = "Bill Depth (mm)",
    ylab = "Body Mass (g)",
    col = c("midnightblue", "brown1", "mediums
# Add a legend
legend("topright",
    legend = levels(penguins$species),
    col = c("midnightblue", "brown1", "mediums
pch = 1,
    title = "Species")
```


Plotting Character (pch, line 143)

```
# Make the plot again
plot(bill_depth_mm ~ body_mass_g,
    data = penguins,
    main = "Scatterplot of Penguin Body Mass
    xlab = "Bill Depth (mm)",
    ylab = "Body Mass (g)",
    col = c("midnightblue", "brown1", "medium:
    pch = c(0, 1, 2)[penguins$species])
```

```
# Add a legend
legend("topright",
    legend = levels(penguins$species),
    col = c("midnightblue", "brown1", "media
    pch = c(0, 1, 2),
    title = "Species")
```


Question Break

Correlation (line 165)

Last week's scatterplot:

```
plot(body_mass_g ~ bill_length_mm,
    data = penguins,
    main = "Scatterplot of Penguin Body Mass
    xlab = "Bill Length (mm)",
    ylab = "Body Mass in (g)")
```

cor(penguins\$bill_length_mm, penguins\$body_mas;

[1] 0.5894511

Correlation Matrices (line 183)

First, subset the data to just look at quantitative variables, then feed that subset to **cor()** to compute a *correlation matrix*

numericPenguins <- subset(penguins, select = c("bill_length_mm", "bill_depth_mm", "flipper_length_mm"
cor(numericPenguins)</pre>

	<pre>bill_length_mm</pre>	<pre>bill_depth_mm</pre>	<pre>flipper_length_mm</pre>	body_mass_g
bill_length_mm	1.000000	-0.2286256	0.6530956	0.5894511
bill_depth_mm	-0.2286256	1.0000000	-0.5777917	-0.4720157
<pre>flipper_length_mm</pre>	0.6530956	-0.5777917	1.0000000	0.8729789
body_mass_g	0.5894511	-0.4720157	0.8729789	1.0000000

Each "entry" in the correlation matrix is the correlation between the variables labeling that entry's row and column.

Linear Regression (line 197)

reg1 <- lm(body_mass_g ~ bill_length_mm, data = penguins)
summary(reg1)</pre>

```
Call:
lm(formula = body_mass_g \sim bill_length_mm, data = penguins)
Residuals:
    Min
           10 Median 30
                                     Max
-1759.38 -468.82 27.79 464.20 1641.00
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 388.845 289.817 1.342 0.181
bill_length_mm 86.792 6.538 13.276 <2e-16 ***
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1
Residual standard error: 651.4 on 331 degrees of freedom
Multiple R-squared: 0.3475, Adjusted R-squared: 0.3455
F-statistic: 176.2 on 1 and 331 DF, p-value: < 2.2e-16
```

ANOVA Tables (line 214)

Give your regression model (ours is reg1) to the anova() function:

anova(reg1)

Analysis of Variance Table

Response: body_mass_g Df Sum Sq Mean Sq F value Pr(>F) bill_length_mm 1 74792533 74792533 176.24 < 2.2e-16 *** Residuals 331 140467133 424372 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$$R^2 = rac{\mathrm{SSM}}{\mathrm{SST}}$$

You will be **randomly** moved to a breakout room for the rest of the lab (minus ~10 minutes)

Your tasks

- 1. Introduce yourself to your collaborators!
- 2. Work together to complete the "Try It!" and "Dive Deeper" portions of the lab assignment by copy/pasting and modifying appropriate code from earlier in the document.

How to get help

- I'll be floating around between breakout rooms to check on everyone
- Use the "Ask for help" button to flag me down
- Let me know when you're done

What questions do you have? Any issues?

"Exit Ticket"

Please take 1-2 minutes to complete the survey at

bit.ly/250ticket5

Your tasks for the week running Friday 9/25 - Friday 10/2:

Task	Due Date	Submission
Homework 4	Friday 10/2 8AM ET	course.work
Lab 5	Friday 10/2 8AM ET	Canvas

Stop by office hours! You can attend anyone's -- not just mine!