## STATS 250 Lab 05

## Scatterplots and Linear

 RegressionNick Seewald
nseewald@umich.edu
Week of 09/28/2020

## Reminders §

Your tasks for the week running Friday 9/25 - Friday 10/2:


Stop by office hours! You can attend anyone's -- not just mine!

## Lab 3 Comments

(Sorry I'm still a bit behind on grading)

- Please be careful to answer all parts of every question!
- When deciding number of breaks for a histogram, try to avoid empty bins.
- Skew direction is which side the tail is on
- Skew right implies mean > median; skew left implies mean < median
- In Dive Deeper 2, I think we should keep the outlier: there's no reason to believe that William and Mary is fundamentally different from other public schools.
- "Accuracy" or numerical convenience is not a good reason to eliminate a data point.


## Homework 3 Summary

- SHOW WORK. No work = no points
- Independent events: $P(A$ and $B)=P(A) P(B)$ if and only if $A, B$ are independent. Same thing with $P(A \mid B)=P(A)$.
- This must hold exactly: $0.786 \neq 0.75$
- Events can be mutually exclusive, independent, or neither, but not both.
- Use numerical support; don't rely on logic.


## Weekly Advice

- R "draws" graphs like ink on paper. Make a graph (e.g., plot ( )), then use other functions to draw on top of the graph.
- Because R draws in "ink", there's no eraser! You need to start over by running plot () again.
- The way to get a graphic you like is by trying stuff and adjusting.
- Use R's built-in help for "graphical parameters"! In the console, type ?par.



## Vectors in R (line 59)

- A vector is a way to hold a collection of things in R. Think of it as a pill organizer.
- We can make vectors using the c() function. c here stands for combine.

```
x <- c(1, 72.15, -4)
```

[1] $1.0072 .15-4.00$

## stringsAsFactors (line 70)

penguins <- read.csv("https://raw.githubusercontent.com/STATS250SBI/palmerpenguins/master/inst/extd stringsAsFactors = T)

- We've got an extra argument to read.csv() called stringsAsFactors.
- Tells read.csv( ) that it should treat data that looks like text as a categorical variable.
- In STATS 250, text-like data will almost always be a categorical variable, so we'll be setting stringsAsFactors = TRUE often.


## Scatterplots Revisited (line 82)

```
plot(bill_depth_mm ~ body_mass_g,
    data = penguins,
    main = "Scatterplot of Penguin Body Mass
    xlab = "Bill Depth (mm)"
    ylab = "Body Mass (g)")
```

Notice:

1. "Formula syntax": We specified $y$ ~ $x$ in the plot () code.
2. Pretty obvious clustering here! What could be the reason for this?


## Scatterplots: Color-Coding Points (line 97)

```
plot(bill_depth_mm ~ body_mass_g,
    data = penguins,
    main = "Scatterplot of Penguin Body Mass
    xlab = "Bill Depth (mm)",
    ylab = "Body Mass (g)"
    col = c("midnightblue", "brown1", "medium
```

- Set col argument to a vector of colors
- Use [ ] to select color based on categorical variable
- Use color with restraint



## Color Should Have Meaning



This looks fun, but what does the color mean?

Color should convey information, and enhance readability.


## Adding Legends to Plots (line 118)

```
# Make the plot again
plot(bill_depth_mm ~ body_mass_g,
    data = penguins,
    main = "Scatterplot of Penguin Body Mass
    xlab = "Bill Depth (mm)",
    ylab = "Body Mass (g)",
    col = c("midnightblue", "brown1", "medium
# Add a legend
legend("topright",
    legend = levels(penguins$species),
    col = c("midnightblue", "brown1", "medi
    pch = 1,
    title = "Species")
```

Scatterplot of Penguin Body Mass vs. Bill Depth


## Plotting Character (pch, line 143)

```
# Make the plot again
plot(bill_depth_mm ~ body_mass_g,
    data = penguins,
    main = "Scatterplot of Penguin Body Mass
    xlab = "Bill Depth (mm)",
    ylab = "Body Mass (g)",
    col = c("midnightblue", "brown1", "medium
    pch = c(0, 1, 2)[penguins$species])
# Add a legend
legend("topright",
    legend = levels(penguins$species),
    col = c("midnightblue", "brown1", "medi
    pch = c(0, 1, 2),
    title = "Species")
```

Scatterplot of Penguin Body Mass vs. Bill Depth


## Question Break



## Correlation (line 165)

Last week's scatterplot:

```
plot(body_mass_g ~ bill_length_mm,
    data = penguins,
    main = "Scatterplot of Penguin Body Mass
    xlab = "Bill Length (mm)",
    ylab = "Body Mass in (g)")
```

cor (penguins\$bill_length_mm, penguins\$body_mas
[1] 0.5894511

Scatterplot of Penguin Body Mass versus Bill Length


## Correlation Matrices (line 183)

First, subset the data to just look at quantitative variables, then feed that subset to cor ( ) to compute a correlation matrix

```
numericPenguins <- subset(penguins, select = c("bill_length_mm", "bill_depth_mm", "flipper_length_mr
cor(numericPenguins)
```

|  | bill_length_mm | bill_depth_mm | flipper_length_mm | body_mass_g |
| :--- | ---: | ---: | ---: | ---: |
| bill_length_mm | 1.0000000 | -0.2286256 | 0.6530956 | 0.5894511 |
| bill_depth_mm | -0.2286256 | 1.0000000 | -0.5777917 | -0.4720157 |
| flipper_length_mm | 0.6530956 | -0.5777917 | 1.0000000 | 0.8729789 |
| body_mass_g | 0.5894511 | -0.4720157 | 0.8729789 | 1.0000000 |

Each "entry" in the correlation matrix is the correlation between the variables labeling that entry's row and column.

## Linear Regression (line 197)

```
reg1 <- lm(body_mass_g ~ bill_length_mm, data = penguins)
summary(reg1)
```

Call:
lm(formula = body_mass_g $\sim$ bill_length_mm, data = penguins)
Residuals:

| Min | 1Q | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -1759.38 | -468.82 | 27.79 | 464.20 | 1641.00 |

Coefficients:

|  | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (Intercept) | 388.845 | 289.817 | 1.342 | 0.181 |  |
| bill_length_mm | 86.792 | 6.538 | 13.276 | $<2 \mathrm{e}-16$ |  |
| Signif. codes: | 0 '***' | 0.001 '**' | 0.01 '*' | 0.05 | 0.1 |

Residual standard error: 651.4 on 331 degrees of freedom
Multiple R-squared: 0.3475, Adjusted R-squared: 0.3455
F-statistic: 176.2 on 1 and 331 DF, p-value: < $2.2 \mathrm{e}-16$

## ANOVA Tables (line 214)

Give your regression model (ours is reg1) to the anova( ) function:

```
anova(reg1)
Analysis of Variance Table
Response: body_mass_g
bill_length_mm 
Residuals 331 140467133 424372
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\[
R^{2}=\frac{\mathrm{SSM}}{\mathrm{SST}}
\]
```


## Lab Project 畨

You will be randomly moved to a breakout room for the rest of the lab (minus ~10 minutes)

## Your tasks

1. Introduce yourself to your collaborators!
2. Work together to complete the "Try It!" and "Dive Deeper" portions of the lab assignment by copy/pasting and modifying appropriate code from earlier in the document.

## How to get help

- I'll be floating around between breakout rooms to check on everyone
- Use the "Ask for help" button to flag me down
- Let me know when you're done

What questions do you have? Any issues?

## "Exit Ticket"

Please take 1-2 minutes to complete the survey at bit.ly/250ticket5

## Reminders §

Your tasks for the week running Friday 9/25 - Friday 10/2:


Stop by office hours! You can attend anyone's -- not just mine!

