
Reminders 💡

Your tasks for the week running Friday 10/2 - Friday 10/9:

Task Due Date Submission

M-Write 1 Final Revision Wednesday 10/7 Canvas

Homework 5 Friday 10/9 8AM ET course.work

Lab 5 Friday 10/9 8AM ET Canvas

Stop by of�ce hours! You can attend anyone's -- not just mine!

M-Write of�ce hours schedule on Canvas (see MWrite Info on home page)

2 / 19

Homework 4 Comments

Statistics is not a branch of math. It is a mathematical science.
In statistics, it's important that we tie our conclusions back to data.

3 / 19

Homework 4 Comments

Statistics is not a branch of math. It is a mathematical science.
In statistics, it's important that we tie our conclusions back to data.

context context context context context

3 / 19

Homework 4 Comments

Statistics is not a branch of math. It is a mathematical science.
In statistics, it's important that we tie our conclusions back to data.

context context context context context
ALWAYS put your answer back into the context of the problem.

What does mean in this situation?
Why is regression useful to address this question?

R
2

3 / 19

Statistical Learning Objectives

1. Explore sample-to-sample variation
2. Investigate probability using long-

run proportions

R Learning Objectives

1. Learn about reproducible
randomness by "setting seeds"

2. Functions within functions:
table(sample())

3. Line plots in R

Learning Objectives

4 / 19

Weekly Advice

Randomness is random: your mileage may vary when you run code inside chunks.
Check your HTML �le before submitting it! You'll notice formatting issues you can
easily �x (often by adding blank lines to your Rmd �le).

5 / 19

Please try to follow along with this
video. It will help.

Weekly Advice

Randomness is random: your mileage may vary when you run code inside chunks.
Check your HTML �le before submitting it! You'll notice formatting issues you can
easily �x (often by adding blank lines to your Rmd �le).

5 / 19

Vectors (again)

A character vector is a vector where the elements are "strings" of text.

x <- c("hi", "this is", "a character vector.", "Are you impressed?")
x

[1] "hi" "this is" "a character vector."
[4] "Are you impressed?"

Again, note the use of the c() function.

6 / 19

Vectors (again)

A character vector is a vector where the elements are "strings" of text.

x <- c("hi", "this is", "a character vector.", "Are you impressed?")
x

[1] "hi" "this is" "a character vector."
[4] "Are you impressed?"

Again, note the use of the c() function.

6 / 19

rep()
What's easier to code?

pets <- c("cat", "cat", "cat", "cat")
pets

[1] "cat" "cat" "cat" "cat"

7 / 19

rep()
What's easier to code?

pets <- c("cat", "cat", "cat", "cat")
pets

[1] "cat" "cat" "cat" "cat"

cats <- rep("cat", 4)
cats

[1] "cat" "cat" "cat" "cat"

7 / 19

rep()
What's easier to code?

pets <- c("cat", "cat", "cat", "cat")
pets

[1] "cat" "cat" "cat" "cat"

cats <- rep("cat", 4)
cats

[1] "cat" "cat" "cat" "cat"

rep(what you want to repeat,number of times to repeat it)

7 / 19

rep()
What's easier to code?

pets <- c("cat", "cat", "cat", "cat", "dog", "dog", "dog", "dog", "dog")
pets

[1] "cat" "cat" "cat" "cat" "dog" "dog" "dog" "dog" "dog"

pets2 <- c(rep("cat", 4), rep("dog", 5))
pets2

[1] "cat" "cat" "cat" "cat" "dog" "dog" "dog" "dog" "dog"

8 / 19

table(
 c(
 rep("heads", 5000),
 rep("tails", 5000)
)
)

heads tails
 5000 5000

Functions in Functions

Arguments to functions can be functions! This is called nesting.

9 / 19

table(
 c(
 rep("heads", 5000),
 rep("tails", 5000)
)
)

heads tails
 5000 5000

Functions in Functions

Arguments to functions can be functions! This is called nesting.

WATCH OUT FOR PARENTHESES

9 / 19

Remember sample()?

We used sample() to simulate rolling a die using the vector 1:6.

We can also give sample() a character vector to sample from!

coin <- c('heads', 'tails')
sample(coin, size = 30, replace = TRUE)

 [1] "heads" "heads" "heads" "heads" "tails" "heads" "tails" "tails" "tails"
[10] "heads" "heads" "tails" "tails" "tails" "tails" "heads" "heads" "heads"
[19] "heads" "heads" "tails" "tails" "heads" "heads" "heads" "tails" "tails"
[28] "tails" "tails" "tails"

10 / 19

The prob argument to sample()
We can simulate a biased coin using the prob argument.

prob takes a vector of "probability weights", one per element of the vector to
sample from
prob applies the weights in order

coin <- c('heads', 'tails')
sample(coin, size = 30, replace = TRUE, prob = c(0.3, 0.7))

 [1] "heads" "tails" "tails" "tails" "heads" "tails" "tails" "tails" "tails"
[10] "tails" "heads" "tails" "tails" "tails" "heads" "heads" "tails" "tails"
[19] "tails" "tails" "tails" "tails" "heads" "heads" "tails" "tails" "tails"
[28] "tails" "tails" "tails"

11 / 19

Humans are very bad at generating
random numbers.
Computers only seem better.
Computers produce pseudo-random
numbers: if you know the "seed", you
know the entire sequence of
"random" numbers.

Pseudo-random numbers

12 / 19

set.seed()
We can tell R to use a particular "seed" with set.seed().
Setting the seed makes your randomness reproducible: you will now get the same
answers (in your knitted document) as your peers, provided you use the same code.

set.seed(8362)
sample(1:5000, size = 3)

[1] 258 1834 2371

13 / 19

Remember this?

sixSidedDieRoll <- function(n) {
 mean(sample(1:6, size = n, replace = T))
}
plot(sapply(1:300, sixSidedDieRoll),
 main = "Law of Large Numbers Example",
 xlab = "Number of Six-Sided Dice",
 ylab = "Average")

Line Graphs 📈

14 / 19

We can make a line graph with the
type argument to plot():

plot(sapply(1:300, sixSidedDieRoll),
 main = "Law of Large Numbers Example",
 xlab = "Number of Six-Sided Dice",
 ylab = "Average",
 type = "l")

Use type = l for a line graph (that's
a lowercase L)

Line Graphs 📈

15 / 19

plot(sapply(1:300, sixSidedDieRoll),
 main = "Law of Large Numbers Example",
 xlab = "Number of Six-Sided Dice",
 ylab = "Average",
 type = "o",
 pch = 20)

Use type = o to draw lines between
points (and pch is back!)

Line Graphs 📈

16 / 19

plot(sapply(1:300, sixSidedDieRoll),
 main = "Law of Large Numbers Example",
 xlab = "Number of Six-Sided Dice",
 ylab = "Average",
 type = "o",
 pch = 20,
 lty = "dotted",
 lwd = 2)

Use lty to specify line type:
(0=blank, 1=solid (default), 2=dashed,
3=dotted, 4=dotdash, 5=longdash,
6=twodash)
Use lwd to specify line width
(default is 1)

Line Graphs 📈

17 / 19

Your tasks

Complete the "Try It!" and "Dive
Deeper" portions of the lab
assignment by copy/pasting and
modifying appropriate code from
earlier in the document.

How to get help

Use the "labs" section of Piazza to
ask questions and work with your
peers.
If you use Piazza, please note that in
the "Collaborators" list at the top of
the discussion section.
If you're really stuck, email your lab
instructor!

Lab Project ⌨

18 / 1919 / 19

STATS 250 Lab 06
Simulation

Nick Seewald
nseewald@umich.edu

Week of 10/05/2020

Reminders 💡

Your tasks for the week running Friday 10/2 - Friday 10/9:

Task Due Date Submission

M-Write 1 Final Revision Wednesday 10/7 Canvas

Homework 5 Friday 10/9 8AM ET course.work

Lab 5 Friday 10/9 8AM ET Canvas

Stop by of�ce hours! You can attend anyone's -- not just mine!

M-Write of�ce hours schedule on Canvas (see MWrite Info on home page)

2 / 19

Homework 4 Comments

Statistics is not a branch of math. It is a mathematical science.
In statistics, it's important that we tie our conclusions back to data.

3 / 19

Homework 4 Comments

Statistics is not a branch of math. It is a mathematical science.
In statistics, it's important that we tie our conclusions back to data.

context context context context context

3 / 19

Homework 4 Comments

Statistics is not a branch of math. It is a mathematical science.
In statistics, it's important that we tie our conclusions back to data.

context context context context context
ALWAYS put your answer back into the context of the problem.

What does mean in this situation?
Why is regression useful to address this question?

R
2

3 / 19

Statistical Learning Objectives

1. Explore sample-to-sample variation
2. Investigate probability using long-

run proportions

R Learning Objectives

1. Learn about reproducible
randomness by "setting seeds"

2. Functions within functions:
table(sample())

3. Line plots in R

Learning Objectives

4 / 19

Weekly Advice

Randomness is random: your mileage may vary when you run code inside chunks.
Check your HTML �le before submitting it! You'll notice formatting issues you can
easily �x (often by adding blank lines to your Rmd �le).

5 / 19

Please try to follow along with this
video. It will help.

Weekly Advice

Randomness is random: your mileage may vary when you run code inside chunks.
Check your HTML �le before submitting it! You'll notice formatting issues you can
easily �x (often by adding blank lines to your Rmd �le).

5 / 19

Vectors (again)

A character vector is a vector where the elements are "strings" of text.

x <- c("hi", "this is", "a character vector.", "Are you impressed?")
x

[1] "hi" "this is" "a character vector."
[4] "Are you impressed?"

Again, note the use of the c() function.

6 / 19

Vectors (again)

A character vector is a vector where the elements are "strings" of text.

x <- c("hi", "this is", "a character vector.", "Are you impressed?")
x

[1] "hi" "this is" "a character vector."
[4] "Are you impressed?"

Again, note the use of the c() function.

6 / 19

rep()
What's easier to code?

pets <- c("cat", "cat", "cat", "cat")
pets

[1] "cat" "cat" "cat" "cat"

7 / 19

rep()
What's easier to code?

pets <- c("cat", "cat", "cat", "cat")
pets

[1] "cat" "cat" "cat" "cat"

cats <- rep("cat", 4)
cats

[1] "cat" "cat" "cat" "cat"

7 / 19

rep()
What's easier to code?

pets <- c("cat", "cat", "cat", "cat")
pets

[1] "cat" "cat" "cat" "cat"

cats <- rep("cat", 4)
cats

[1] "cat" "cat" "cat" "cat"

rep(what you want to repeat,number of times to repeat it)

7 / 19

rep()
What's easier to code?

pets <- c("cat", "cat", "cat", "cat", "dog", "dog", "dog", "dog", "dog")
pets

[1] "cat" "cat" "cat" "cat" "dog" "dog" "dog" "dog" "dog"

pets2 <- c(rep("cat", 4), rep("dog", 5))
pets2

[1] "cat" "cat" "cat" "cat" "dog" "dog" "dog" "dog" "dog"

8 / 19

table(
 c(
 rep("heads", 5000),
 rep("tails", 5000)
)
)

heads tails
 5000 5000

Functions in Functions

Arguments to functions can be functions! This is called nesting.

9 / 19

table(
 c(
 rep("heads", 5000),
 rep("tails", 5000)
)
)

heads tails
 5000 5000

Functions in Functions

Arguments to functions can be functions! This is called nesting.

WATCH OUT FOR PARENTHESES

9 / 19

Remember sample()?

We used sample() to simulate rolling a die using the vector 1:6.

We can also give sample() a character vector to sample from!

coin <- c('heads', 'tails')
sample(coin, size = 30, replace = TRUE)

 [1] "heads" "heads" "heads" "heads" "tails" "heads" "tails" "tails" "tails"
[10] "heads" "heads" "tails" "tails" "tails" "tails" "heads" "heads" "heads"
[19] "heads" "heads" "tails" "tails" "heads" "heads" "heads" "tails" "tails"
[28] "tails" "tails" "tails"

10 / 19

The prob argument to sample()
We can simulate a biased coin using the prob argument.

prob takes a vector of "probability weights", one per element of the vector to
sample from
prob applies the weights in order

coin <- c('heads', 'tails')
sample(coin, size = 30, replace = TRUE, prob = c(0.3, 0.7))

 [1] "heads" "tails" "tails" "tails" "heads" "tails" "tails" "tails" "tails"
[10] "tails" "heads" "tails" "tails" "tails" "heads" "heads" "tails" "tails"
[19] "tails" "tails" "tails" "tails" "heads" "heads" "tails" "tails" "tails"
[28] "tails" "tails" "tails"

11 / 19

Humans are very bad at generating
random numbers.
Computers only seem better.
Computers produce pseudo-random
numbers: if you know the "seed", you
know the entire sequence of
"random" numbers.

Pseudo-random numbers

12 / 19

set.seed()
We can tell R to use a particular "seed" with set.seed().
Setting the seed makes your randomness reproducible: you will now get the same
answers (in your knitted document) as your peers, provided you use the same code.

set.seed(8362)
sample(1:5000, size = 3)

[1] 258 1834 2371

13 / 19

Remember this?

sixSidedDieRoll <- function(n) {
 mean(sample(1:6, size = n, replace = T))
}
plot(sapply(1:300, sixSidedDieRoll),
 main = "Law of Large Numbers Example",
 xlab = "Number of Six-Sided Dice",
 ylab = "Average")

Line Graphs 📈

14 / 19

We can make a line graph with the
type argument to plot():

plot(sapply(1:300, sixSidedDieRoll),
 main = "Law of Large Numbers Example",
 xlab = "Number of Six-Sided Dice",
 ylab = "Average",
 type = "l")

Use type = l for a line graph (that's
a lowercase L)

Line Graphs 📈

15 / 19

plot(sapply(1:300, sixSidedDieRoll),
 main = "Law of Large Numbers Example",
 xlab = "Number of Six-Sided Dice",
 ylab = "Average",
 type = "o",
 pch = 20)

Use type = o to draw lines between
points (and pch is back!)

Line Graphs 📈

16 / 19

plot(sapply(1:300, sixSidedDieRoll),
 main = "Law of Large Numbers Example",
 xlab = "Number of Six-Sided Dice",
 ylab = "Average",
 type = "o",
 pch = 20,
 lty = "dotted",
 lwd = 2)

Use lty to specify line type:
(0=blank, 1=solid (default), 2=dashed,
3=dotted, 4=dotdash, 5=longdash,
6=twodash)
Use lwd to specify line width
(default is 1)

Line Graphs 📈

17 / 19

Your tasks

Complete the "Try It!" and "Dive
Deeper" portions of the lab
assignment by copy/pasting and
modifying appropriate code from
earlier in the document.

How to get help

Use the "labs" section of Piazza to
ask questions and work with your
peers.
If you use Piazza, please note that in
the "Collaborators" list at the top of
the discussion section.
If you're really stuck, email your lab
instructor!

Lab Project ⌨

18 / 19

19 / 19

