STATS 250 Lab 08 **Sampling Distributions of** Proportions

Nick Seewald nseewald@umich.edu Week of 10/19/2020

Reminders

Your tasks for the week running Friday 10/19 - Friday 10/23:

Task	Due Date	Submission
Lab 8	Friday 10/23 8:00AM ET	Canvas
No homework this week		course.work

Office hours are back to normal this week (with a few small tweaks)

Midterm regrade requests through Gradescope due **Tuesday 10/27 8a

Midterm Recap

Midterm Recap

If the midterm didn't go as expected *that's OKAY*. There's plenty of semester left.

What's the plan?

Today we're going to learn about "sampling distributions" and something called the **Central Limit Theorem** (CLT).

What's the plan?

Today we're going to learn about "sampling distributions" and something called the **Central Limit Theorem** (CLT).

The central limit theorem is sort of magical. We'll talk about it in more detail in lecture!

Sampling Distributions

A sampling distribution refers to the possible values for a *statistic* (e.g., \hat{p}) and how often those values occur.

We've sort of seen sampling distributions already. Can you think of how?

Sampling Distributions

A sampling distribution refers to the possible values for a *statistic* (e.g., \hat{p}) and how often those values occur.

We've sort of seen sampling distributions already. Can you think of how?

The histograms we've made of $\hat{p}_{\rm sim}$ are sampling distributions of \hat{p} (under the null hypothesis model)!

Penguins!

penguins <- read.csv("https://raw.githubusercontent.com/STATS250SBI/palmerpenguins/master/inst/extda stringsAsFactors = TRUE)

Let's remind ourselves of what variables are in this data:

Use your favorite function or two to explore the data

Let's remind ourselves of what variables are in this data:

Use your favorite function or two to explore the data

Use your favorite function or two to explore the data
names(penguins)

[1] "species" "island" "bill_length_mm"
[4] "bill_depth_mm" "flipper_length_mm" "body_mass_g"
[7] "sex" "year"

Let's remind ourselves of what variables are in this data:

Use your favorite function or two to explore the data

Use your favorite function or two to explore the data
names(penguins)

[1] "species" "island" "bill_length_mm"
[4] "bill_depth_mm" "flipper_length_mm" "body_mass_g"
[7] "sex" "year"

IMPORTANT NOTE: For the purposes of this example, we're going to assume that the penguins in the data represent the *population* of all penguins in the Palmer Archipelago. This is obviously not true: there are more than 333 penguins living on these islands. *This is just to illustrate ideas*.

"Population" proportions

Assuming our data is on the full population of penguins in the archipelago, how could we find the population proportion of Gentoo penguins?

"Population" proportions

Assuming our data is on the full population of penguins in the archipelago, how could we find the population proportion of Gentoo penguins?

proportions(table(penguins\$species))

Adelie Chinstrap Gentoo 0.4384384 0.2042042 0.3573574

"Population" proportions

Assuming our data is on the full population of penguins in the archipelago, how could we find the population proportion of Gentoo penguins?

proportions(table(penguins\$species))

Adelie Chinstrap Gentoo 0.4384384 0.2042042 0.3573574

p=0.357

where p is the population proportion of Gentoo penguins in the Palmer Archipelago

Start by setting the seed:

set.seed(7923)

Things to remember when setting the seed:

- Guaranteed to get the same results from the same code in the *knitted* document
- Determines the *sequence* of random numbers: things can get knocked off sequence
- Use "Run All Chunks Above" to get back on sequence and to get the same numbers as in the knitted document

Taking a sample

Take a sample of size 20 from the "population" of all penguins:

sample1 <- penguins[sample(1:333, size = 20),]</pre>

Taking a sample

Take a sample of size 20 from the "population" of all penguins:

san	<pre>sample1 <- penguins[sample(1:333, size = 20),]</pre>						
	species	island	bill_length_mm	bill_depth_mm	<pre>flipper_length_mm</pre>	body_mass_g	
271	Chinstrap	Dream	45.2	17.8	198	3950	
252	Gentoo	Biscoe	43.3	14.0	208	4575	
	sex yea	ar					
271	female 200	97					
252	fomalo 200	aa					

Taking a sample

Take a sample of size 20 from the "population" of all penguins:

sam	nple1 <- pe	enguins[sample(1:333, s	size = 20),]		
	species	island	<pre>bill_length_mm</pre>	<pre>bill_depth_mm</pre>	flipper_length_mm	body_mass_g
271	Chinstrap	Dream	45.2	17.8	198	3950
252	Gentoo	Biscoe	43.3	14.0	208	4575
		ar				

271 female 2007

252 female 2009

proportions(table(sample1\$species))

Adelie ChinstrapGentoo0.500.150.35

Taking another sample

sample2 <- penguins[sample(1:333, size = 20),] # reusing the same code as above
proportions(table(sample2\$species))</pre>

Adelie ChinstrapGentoo0.650.200.15

We get different results! This is expected, it's *sample-to-sample variability*.

Taking another sample

sample2 <- penguins[sample(1:333, size = 20),] # reusing the same code as above
proportions(table(sample2\$species))</pre>

Adelie ChinstrapGentoo0.650.200.15

We get different results! This is expected, it's *sample-to-sample variability*.

1000 more samples

```
samplesOfSize20 <- replicate(1000, {
   s <- penguins[sample(1:333, size = 20), ]
   proportions(table(s$species))["Gentoo"]
})</pre>
```

```
hist(samplesOfSize20,
    main = "Sampling distribution of p-hat, n
    xlab = "p-hat values",
    col = "darkturquoise",
    xlim = c(0, 1),
    cex.lab = 1.5,
    cex.main = 1.5,
    cex.main = 1.5)
abline(v = proportions(table(penguins$species))
    lwd = 5, lty = "dashed", col = "darkblue"
```


Describe this distribution

https://pollev.com/nickseewald611

Larger samples: n = 40

```
samplesOfSize40 <- replicate(1000, {
   s <- penguins[sample(1:333, size = 40), ]
   proportions(table(s$species))["Gentoo"]
})</pre>
```

```
hist(samplesOfSize40,
    main = "Sampling distribution of p-hat, n
    xlab = "p-hat values",
    col = "darkturquoise",
    xlim = c(0, 1),
    cex.lab = 1.5,
    cex.main = 1.5,
    cex.axis = 1.5)
abline(v = proportions(table(penguins$species))
    lwd = 5, lty = "dashed", col = "darkblue"
```


How do these distributions compare?

https://pollev.com/nickseewald611

Even larger samples: n = 100

```
samplesOfSize100 <- replicate(1000, {
   s <- penguins[sample(1:333, size = 100), ]
   proportions(table(s$species))["Gentoo"]
})</pre>
```

```
hist(samplesOfSize100,
    main = "Sampling distribution of p-hat, n
    xlab = "p-hat values",
    col = "darkturquoise",
    xlim = c(0, 1),
    cex.lab = 1.5,
    cex.main = 1.5,
    cex.axis = 1.5)
abline(v = proportions(table(penguins$species))
    lwd = 5, lty = "dashed", col = "darkblue"
```


Comparing Results

https://pollev.com/nickseewald611

17 / 21

More Detail

As the size of our samples increases, the sampling distribution of \hat{p} becomes...

more obviously centered around p
 narrower
 more bell-shaped

Central Limit Theorem

If we look at a proportion (or difference in proportions) and the scenario satisfies certain conditions, then the sample proportion (or difference in proportions) will appear to follow a bell-shaped curve called the *normal distribution*.

Central Limit Theorem

If we look at a proportion (or difference in proportions) and the scenario satisfies certain conditions, then the sample proportion (or difference in proportions) will appear to follow a bell-shaped curve called the *normal distribution*.

Conditions:

1. **Observations in the sample are independent.** Guaranteed by random sampling or random allocation to treatment/control.

2. The sample is large enough. "Large enough" means $n imes p\geq 10$ and $n imes (1-p)\geq 10$ (\$p\$ the *population* proportion).

Your tasks

- Complete the "Try It!" and "Dive Deeper" portions of the lab assignment by copy/pasting and modifying appropriate code from earlier in the document.
- Introduce yourself to your collaborators
- Do not leave people behind.

How to get help

- Ask your collaborators -- share your screen!
- Use the "Ask for Help" button to flag me down.

http://bit.ly/250ticket8

Your tasks for the week running Friday 10/19 - Friday 10/23:

Task	Due Date	Submission
Lab 8	Friday 10/23 8:00AM ET	Canvas
No homework this week		course.work

Office hours are back to normal this week (with a few small tweaks)

Midterm regrade requests through Gradescope due **Tuesday 10/27 8a