STATS 250 Lab 12 Paired Data and Difference of Two Means

Nick Seewald
nseewald@umich.edu
Week of 11/16/2020

Reminders §

Your tasks for the week running Friday 11/13 - Friday 11/20

Task	Due Date	Submission
M-Write 2 Revision	Thursday 11/19 4:59PM ET	Canvas
Lab 12	Friday 11/20 8:00AM ET	Canvas
Homework 9	Friday 11/20 8:00AM ET	course.work

M-Write Office Hours on Canvas!

Homework 8 Comments

Question 3b:

The EPA claims that a 2012 Prius gets 50 MPG (city and highway mileage combined). Do these data provide strong evidence against this estimate for drivers who participate on fueleconomy.gov?

Make sure to state your hypotheses, check the conditions, calculate the test statistic, determine the p-value, evaluate the p-value and the compatibility of the null model, and make a conclusion in the context of the problem (and, if necessary, make a recommendation).

Homework 8 Comments

Question 3b:

The EPA claims that a 2012 Prius gets 50 MPG (city and highway mileage combined). Do these data provide strong evidence against this estimate for drivers who participate on fueleconomy.gov?

- This is a question about a mean, not a proportion: inference is on μ, not p.
- $t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$; order matters here.
- Two-sided p-value: double pt () output!
- SHOW WORK; conclusion IN CONTEXT; check ALL conditions

Homework 8 Comments

Question 3c:

Calculate a 95\% confidence interval for the average gas mileage of a 2012 Prius by drivers who participate on fueleconomy.gov.

- Make sure to use the correct t^{*} value:
- $n=14$, so df $=14-1=13$
- $t^{*}=q t(p=0.975, d f=13)=2.16$

Homework 8 Comments

Question 6d:

Drive-thru window. Calculate the effect size for this hypothesis test.

$$
d=\frac{\mu-\mu_{0}}{\sigma}
$$

We don't know μ or σ ! So we estimate d using \hat{d} :

$$
\hat{d}=\frac{\bar{x}-\mu_{0}}{s}
$$

Again, order matters.

Homework 8 Comments

Question 8: Type 1 and Type 2 errors

H_{0} : The RC airplane's landing gear is down; the plane is cleared to land
H_{A} : The RC airplane's landing gear is not down; the plane is not cleared to land and will require troubleshooting

Name That Scenario 1

Do you get cookies with your dinner? A UM student decided to stop by MoJo one day at dinner, and asks each student to report the number of cookies they ate while at MoJo. From this data, an appropriate random sample will be selected. The UM student wishes to see if on average, the UM students ate more than one cookie at MoJo during their dinner.
a. One-sample Z-test for a population proportion
b. Two-sample Z-test for the comparison of two population proportions
c. One-sample t-test for a population mean
d. Paired t-test for a population mean of the difference
e. Two-sample t-test for the comparison of two population means

Name That Scenario 1

Do you get cookies with your dinner? A UM student decided to stop by MoJo one day at dinner, and asks each student to report the number of cookies they ate while at MoJo. From this data, an appropriate random sample will be selected. The UM student wishes to see if on average, the UM students ate more than one cookie at MoJo during their dinner.
a. One-sample Z-test for a population proportion
b. Two-sample Z-test for the comparison of two population proportions

c. One-sample t-test for a population mean

d. Paired t -test for a population mean of the difference
e. Two-sample t-test for the comparison of two population means

Name That Scenario 2

Does MoJo cure homesickness? A UM student is interested in seeing if perhaps cookies are just a fond memory for freshman students embarking on their first semester away from home. She gathers a large random sample of UM freshmen students, to ask whether or not they enjoy the cookies at MoJo. Next, she gathers a large random sample of UM students who are not freshmen, to ask whether or not they enjoy the cookies at MoJo. She hopes to compare the differences in these two rates.

a. One-sample Z-test for a population proportion

b. Two-sample Z-test for the comparison of two population proportions
c. One-sample t-test for a population mean
d. Paired t-test for a population mean of the difference
e. Two-sample t-test for the comparison of two population means

Name That Scenario 2

Does MoJo cure homesickness? A UM student is interested in seeing if perhaps cookies are just a fond memory for freshman students embarking on their first semester away from home. She gathers a large random sample of UM freshmen students, to ask whether or not they enjoy the cookies at MoJo. Next, she gathers a large random sample of UM students who are not freshmen, to ask whether or not they enjoy the cookies at MoJo. She hopes to compare the differences in these two rates.

a. One-sample Z-test for a population proportion

b. Two-sample Z-test for the comparison of two population proportions

c. One-sample t-test for a population mean
d. Paired t-test for a population mean of the difference
e. Two-sample t-test for the comparison of two population means

Name That Scenario 3

Are more cookies made at MoJo than at East Quad, on average? A UM student decides to select a random smaple of 30 days from the Winter 2019 semester. For each of those 30 days, they ask each dining hall to report the number of cookies baked. These results will be used to assess whether more cookies are made at MoJo than at East Quad, on average.
a. One-sample Z-test for a population proportion
b. Two-sample Z-test for the comparison of two population proportions
c. One-sample t-test for a population mean
d. Paired t -test for a population mean of the difference
e. Two-sample t-test for the comparison of two population means

Name That Scenario 3

Are more cookies made at MoJo than at East Quad, on average? A UM student decides to select a random sample of 30 days from the Winter 2019 semester. For each of those 30 days, they ask each dining hall to report the number of cookies baked. These results will be used to assess whether more cookies are made at MoJo than at East Quad, on average.
a. One-sample Z-test for a population proportion
b. Two-sample Z-test for the comparison of two population proportions
c. One-sample t-test for a population mean
d. Paired t-test for a population mean of the difference
e. Two-sample t-test for the comparison of two population means

Name That Scenario 4

Who has the tastiest cookies? A UM student decides to stop by Molo to get 40 freshly baked cookies, then stops at East Quad for another 40 freshly baked cookies. She then gets a random sample of 40 UM freshmen, and has them each take a blind taste test. They will taste each cookie, one at a time, without knowing its origin, and select the cookie they like the most. The UM student would like to see if a majority pick MoJo cookies as the tastiest.

a. One-sample Z-test for a population proportion

b. Two-sample Z-test for the comparison of two population proportions
c. One-sample t-test for a population mean
d. Paired t-test for a population mean of the difference
e. Two-sample t-test for the comparison of two population means

Name That Scenario 4

Who has the tastiest cookies? A UM student decides to stop by MoJo to get 40 freshly baked cookies, then stops at East Quad for another 40 freshly baked cookies. She then gets a random sample of 40 UM freshmen, and has them each take a blind taste test. They will taste each cookie, one at a time, without knowing its origin, and select the cookie they like the most. The UM student would like to see if a majority pick MoJo cookies as the tastiest.

a. One-sample Z-test for a population proportion

b. Two-sample Z-test for the comparison of two population proportions
c. One-sample t-test for a population mean
d. Paired t-test for a population mean of the difference
e. Two-sample t-test for the comparison of two population means

Name That Scenario 5

Do athletes love cookies? As a follow up to a previous observation, a UM student decides that it might be best to gather data about whether the student is an athlete or not, as the number of cookies they eat in a week might differ, on average. The UM student gathers a large random sample of UM athletes to ask them to self-report the number of cookies they ate at MoJo the week before. Then the UM student gathers a large random sample of UM non-athletes to ask them to self-report the number of cookies they ate at MoJo the week before.

a. One-sample Z-test for a population proportion

b. Two-sample Z-test for the comparison of two population proportions
c. One-sample t-test for a population mean
d. Paired t -test for a population mean of the difference
e. Two-sample t-test for the comparison of two population means

Name That Scenario 5

Do athletes love cookies? As a follow up to a previous observation, a UM student decides that it might be best to gather data about whether the student is an athlete or not, as the number of cookies they eat in a week might differ, on average. The UM student gathers a large random sample of UM athletes to ask them to self-report the number of cookies they ate at MoJo the week before. Then the UM student gathers a large random sample of UM non-athletes to ask them to self-report the number of cookies they ate at MoJo the week before.

a. One-sample Z-test for a population proportion

b. Two-sample Z-test for the comparison of two population proportions
c. One-sample t-test for a population mean
d. Paired t -test for a population mean of the difference

e. Two-sample t-test for the comparison of two population means

Paired Data (line ~115)

Are textbooks actually cheaper online? Let's compare prices of textbooks at the UCLA bookstore and Amazon for a random sample of 73 courses in the spring (winter) semester of 2010.

```
textbooks <- read.csv("textbooks.csv")
head(textbooks)
    dept_abbr course isbn ucla_new amaz_new
1 Am Ind C170 978-0803272620 27.67 27.95
    Anthro 9 978-0030119194 40.59 31.14
    Anthro 135T 978-0300080643 31.68 32.00
    Anthro 191HB 978-0226206813 16.00 11.52
    Art His M102K 978-0892365999 18.95 14.21
    Art His 118E 978-0394723693 14.95 10.17
```


Paired Data

- Natural correspondence between UCLA price and Amazon price: they're for the same book!
- Same "machinery" as a one-population mean t-test

Key Idea: When working with paired data, we'll work with differences between the paired observations. Our questions are about $\mu_{\text {diff }}$, the average difference in the population.

$$
t=\frac{\bar{x}_{\text {diff }}-\mu_{0}}{s_{\text {diff }} / \sqrt{n}}
$$

Paired t-Test (line ~131)

- Same "machinery" as a one-population mean t-test, just using differences
- We need to make a variable that represents the differences!

```
names(textbooks)
```

```
[1] "dept_abbr" "course" "isbn" "ucla_new" "amaz_new"
```

textbooks\$diff <- _-----_----- - ------------

Paired t-Test (line ~131)

- Same "machinery" as a one-population mean t-test, just using differences
- We need to make a variable that represents the differences!

```
names(textbooks)
```

```
[1] "dept_abbr" "course" "isbn" "ucla_new" "amaz_new"
```

```
textbooks$diff <- __-_-_-_-_-_ - _-_-_-_-----
```

```
textbooks$diff <- textbooks$ucla_new - textbooks$amaz_new
```

head(textbooks)

dept_abbr	course	isbn	ucla_new	amaz_new	diff
Am Ind	C170	978-0803272620	27.67	27.95	-0.28
Anthro	9	978-0030119194	40.59	31.14	9.45
Anthro	135T	978-0300080643	31.68	32.00	-0.32
Anthro	191HB	978-0226206813	16.00	11.52	4.48
Art His	M102K	978-0892365999	18.95	14.21	4.74
Art His	118E	978-0394723693	14.95	10.17	4.78

Paired t-Test: Check Conditions! (line ~145)

- Same "machinery" as a one-population mean t-test, just using differences
hist(textbooks\$diff, main = "Histogram of Pric
xlab = "Price Difference (bookstore minus

Histogram of Price Differences

qqnorm(textbooks\$diff)
qqline(textbooks\$diff)

Paired t-Test: Check Conditions! (line ~145)

Do the differences seem to come from a normally-distributed population?

Paired t-Test: Check Conditions! (line ~145)

Do the differences seem to come from a normally-distributed population?
NOPE. But, there are 73 of them, so we can use the central limit theorem to say $\bar{x}_{\text {diff }}$ is nearly normal, which is good enough.

Paired t-Test (line ~157)

We want to know if there's a difference between the prices, on average.

$$
H_{0}: \mu_{\text {diff }}=0 \quad \text { vs. } \quad H_{a}: \mu_{\text {diff }} \neq 0,
$$

Same "machinery" as a one-population mean t-test, just using differences.

```
t.test(textbooks$diff, mu = 0, alternative = "two.sided")
```

```
    One Sample t-test
data: textbooks$diff
t = 7.6488, df = 72, p-value = 6.928e-11
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
    9.435636 16.087652
sample estimates:
mean of x
12.76164
```


Difference of Two Means: $\mu_{1}-\mu_{2}$

- Read in the penguin data on line ~ 165
- Remember this bimodal histogram from last week? (line ~171)

Difiference of Two Means: $\mu_{1}-\mu_{2}$

hist(penguins\$flipper_length_mm,
main = "Histogram of Flipper Length", xlab = "Flipper length (mm)", col = "peachpuff")

- Bimodal distributions suggest a subgroup effect
- There are three different species in this data

TASK: Take 2 minutes to write code in the
investigateSpecies chunk (line 182) to investigate the relationship between species and flipper length.

Difference of Two Means: $\mu_{1}-\mu_{2}$

boxplot(flipper_length_mm ~ species, data = penguins,
xlab = "Penguin Species", ylab = "Flipper Length (mm)" main = "Boxplots of Flipper Length by

Histograms of Penguin Flipper Length by Species

(code for this histogram is available on request; it's a little too ugly to show)

Difference of Two Means: $\mu_{1}-\mu_{2}$

Let's just compare mean flipper lengths of Adelie and Chinstrap penguins -- the Gentoos are obviously different, so why bother. Hypotheses? (line ~188)

Difference of Two Means: $\mu_{1}-\mu_{2}$

Let's just compare mean flipper lengths of Adelie and Chinstrap penguins -- the Gentoos are obviously different, so why bother. Hypotheses? (line ~188)

$$
H_{0}: \mu_{\text {Adelie }}-\mu_{\text {Chinstrap }}=0 \quad \text { vs. } \quad H_{a}: \mu_{\text {Adelie }}-\mu_{\text {Chinstrap }} \neq 0
$$

Difference of Two Means: $\mu_{1}-\mu_{2}$

Let's just compare mean flipper lengths of Adelie and Chinstrap penguins -- the Gentoos are obviously different, so why bother. Hypotheses? (line ~188)

$$
H_{0}: \mu_{\text {Adelie }}-\mu_{\text {Chinstrap }}=0 \quad \text { vs. } \quad H_{a}: \mu_{\text {Adelie }}-\mu_{\text {Chinstrap }} \neq 0
$$

Subset the data to contain just Adelies and Chinstraps (line ~197)

```
penguinsSubset <- subset(penguins, species %in% c("Adelie", "Chinstrap"))
table(penguinsSubset$species)
```


Adelie Chinstrap

14668

Difference of Two Means: $\mu_{1}-\mu_{2}$

The most important question in statistics is not whether you can do something, it's whether you should do it.

Check Conditions!

Difference of Two Means: $\mu_{1}-\mu_{2}$

The most important question in statistics is not whether you can do something, it's whether you should do it.

Check Conditions!

1. Independence:
2. Penguins within each species are selected independently
3. The samples from each species (between samples) are independent
4. Nearly Normal:
5. Adelie flipper lengths are nearly normal
6. Chinstrap flipper lengths are nearly normal

Difference of Two Means: Check Normality

```
qqnorm(penguinsSubset$flipper_length_mm[penguinsSubset$species == "Adelie"],
    main = "Normal Q-Q Plot for Adelie Penguins")
qqline(penguinsSubset$flipper_length_mm[penguinsSubset$species == "Adelie"])
qqnorm(penguinsSubset$flipper_length_mm[penguinsSubset$species == "Chinstrap"],
    main = "Normal Q-Q Plot for Chinstrap Penguins")
qqline(penguinsSubset$flipper_length_mm[penguinsSubset$species == "Chinstrap"])
```


Two-Sample t-Test

Remember formula notation:

(response variable) ~ (grouping/explanatory variable)

```
t.test(flipper_length_mm ~ species,
    data = penguinsSubset,
    mu = 0,
    alternative = "two.sided")
```

```
    Welch Two Sample t-test
data: flipper_length_mm by species
t = -5.6115, df = 120.88, p-value = 1.297e-07
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-7.739129 -3.702450
sample estimates:
    mean in group Adelie mean in group Chinstrap
        190.1027 195.8235
```

What's our conclusion?

Code Cheat Sheet

pt(q, df, lower.tail = TRUE)

- q is the x-axis value you want to find an area related to
- df is the degrees of freedom of the t distribution
- lower . tail determines whether pt () finds the area to the left or right of q. If lower.tail = TRUE (the default), it shades to the left. If lower.tail = FALSE, it shades to the right.

Code Cheat Sheet

qt(q, df, lower.tail = TRUE)

- p is the probability or area under the curve you want to find an x-axis value for
- df is the degrees of freedom of the t distribution
- lower. tail determines whether pt () finds the area to the left or right of q. If lower.tail = TRUE (the default), it shades to the left. If lower.tail = FALSE, it shades to the right.

Code Cheat Sheet

plotT()

- $d f$ refers to the degrees of freedom of the distribution to plot. You must provide this value.
- shadeValues is a vector of up to 2 numbers that define the region you want to shade
- direction can be one of less, greater, outside, or inside, and controls the direction of shading between shadeValues. Must be less or greater if shadeValues has only one element; outside or inside if two
- col. shade controls the color of the shaded region, defaults to "cornflowerblue"
- . . . lets you specify other graphical parameters to control the appearance of the normal curve (e.g., lwd, lty, col, etc.)

Code Cheat Sheet

qqnorm(y, \ldots)

- y refers to the variable for which you want to create a Q-Q plot
- . . . lets you control graphical elements of the plot like pch, col, etc.

qqline($y, . .$.

- y refers to the variable for which you created a Q-Q plot
- . . . lets you control graphical elements of the plot like pch, col, etc.
- Function can only be used after using qqnorm()

Code Cheat Sheet

t.test(x, alternative = c("two.sided", "less", "greater"), mu = 0, conf.level = 0.95)

- x is a vector of data values OR a formula of the form response ~ group for twosample t-tests.
- alternative specifies the direction of the alternative hypothesis; must be one of "two.sided", "less", or "greater"
- mu indicates the true value of the mean (under the null hypothesis); defaults to 0
- conf. level is the confidence level to be used in constructing a confidence interval; must be between 0 and 1, defaults to 0.95

Lab Project

Your tasks

- Complete the "Try It!" and "Dive Deeper" portions of the lab assignment by copy/pasting and modifying appropriate code from earlier in the document.

How to get help

- Piazza!
- Email your lab instructor (not stats250-miller@umich.edu)

Recap and Reminders \&

We just learned:

- Name that Scenario is a useful study tool
- How to create a "differences" variable
- How to perform a paired t-test in R
- How to perform a two-sample t-test in R

Task	Due Date	Submission
M-Write 2 Revision	Thursday 11/19 4:59PM ET	Canvas
Lab 12	Friday 11/20 8:00AM ET	Canvas
Homework 9	Friday 11/20 8:00AM ET	course.work

M-Write Office Hours on Canvas!

