STATS 250 Lab 13 Linear Regression Inference

Nick Seewald nseewald@umich.edu
Week of 11/30/2020

Reminders §

Your tasks for the week running Friday 11/30 - Friday 12/4

Task	Due Date	Submission
Lab 13	Friday 12/4 8:00AM ET	Canvas
Homework 10	Monday 12/7 8:00AM ET	course.work

WERE IN THE HOME STRETCH! YOU CAN DO IT!

Homework 9 Comments

Question 1f:

The National Center of Education Statistics conducted a survey of high school seniors, collecting test data on reading, writing, and several other subjects. Here we examine a simple random sample of 200 students from this survey.

Based on the results of this hypothesis test, would you expect a confidence interval for the average difference between the reading and writing scores to include 0? Explain your reasoning.

Homework 9 Comments

Question 1f:

Based on the results of this hypothesis test, would you expect a confidence interval for the average difference between the reading and writing scores to include 0? Explain your reasoning.

- p-value was ~ 0.387 : not a lot of evidence against the null!
- Confidence intervals should support the conclusion of the hypothesis test
- Null value is reasonable: it should be in the CI.
- You need to use statistical reasoning (e.g., p-values, hypothesis test results, etc.)

Homework 9 Comments

Question 2:

The automotive engineer asks you, the statistics expert, to help him produce a 98% confidence interval for the population mean difference in decibel level when the car is being powered off (original part minus new part). You'll want to check any conditions, show your computations, and interpret the 98% confidence interval in context.

Checking the independence condition:

- <10\% of the population is a workaround - we really need a random sample
- In a paired test, we don't have between-measurement independence, but we still need within-unit independence!

Homework 9 Comments

Question 7 §̊:

Diamonds. Conduct a hypothesis test to evaluate if there is a difference between the average standardized prices of 0.99 and 1 carat diamonds. Make sure to state your hypotheses clearly, show your computations, and interpret your results in context of the data.

- This is a two-sided test! "if there is a difference" does not imply a direction!
- You need to double the output of pt () for a two-sided test.
- If you have questions, ask the instructional team, not Google.
- See page 16 of your 4.1-4.3 notes for degrees of freedom.

Today's Goals

Statistics \square

- Learn about how to make inference for linear regression parameters
- Learn about conditions needed for valid inference in regression
$\mathrm{R} \square$
- Learn how to interpret output from lm () to make inference in regression
- Learn how to use R to check conditions for valid inference in regression

Scatterplots

```
# Line ~44
penguins <- read.csv("https://raw.githubuserco
plot(body_mass_g ~ flipper_length_mm,
    data = penguins,
    pch = 20,
    ylab = "Body Mass (g)"
    xlab = "Flipper Length (mm)",
    main = "Penguin Body Mass vs. Flipper Len
```


Formula notation!

response variable ~ explanatory variable

Recall: Linear Regression

```
# Line 59
mod1 <- lm(body_mass_g ~ flipper_length_mm, data = penguins)
summary(mod1)
```

```
Call:
lm(formula = body_mass_g ~ flipper_length_mm, data = penguins)
```

Residuals:				
Min	$1 Q$	Median	$3 Q$	Max
-1057.33	-259.79	-12.24	242.97	1293.89

Coefficients:

	Estimat	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	-5872.0	310.29	-18.93	<2e-16	***
flipper_length_mm	50.1	1.54	32.56	$<2 e-16$	
Signif. codes: 0	***' 0	001 '**' 0.	. 01 '*' 0	. 05	

Residual standard error: 393.3 on 331 degrees of freedom Multiple R-squared: 0.7621, Adjusted R-squared: 0.7614 F-statistic: 1060 on 1 and 331 DF, p-value: < 2.2e-16

Regression Output (Lines 63-65)

Call:
lm(formula = body_mass_g ~ flipper_length_mm, data = penguins)

Residuals:				
Min	MQ	Median	$3 Q$	Max
-1057.33	-259.79	-12.24	242.97	1293.89

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	-5872.09	310.29	-18.93	$<2 \mathrm{e}-16$	***
flipper_length_mm	50.15	1.54	32.56	$<2 \mathrm{e}-16$	
Signif. codes: 0	*' 0.00	01 '**' 0.	01 '*' 0	. 05 '.' 0	

Residual standard error: 393.3 on 331 degrees of freedom Multiple R-squared: 0.7621, Adjusted R-squared: 0.7614 F-statistic: 1060 on 1 and 331 DF, p-value: < 2.2e-16

Equation of the regression line?

Regression Output (Lines 63-65)

Call:				
lm(formula = body_mass_g ~ flipper_length_mm, data = penguins)				
Residuals:				
Min 1Q	Median	3Q	Max	
-1057.33 -259.79	-12.24	242.97	1293.89	
Coefficients:				
Estimate Std. Error t value $\operatorname{Pr}(>\mid \mathrm{t\mid})$				
(Intercept)	-5872.09	310.29	-18.93	$<2 \mathrm{e}-16$ ***
flipper_length_mm	50.15	1.54	32.56	$<2 \mathrm{e}-16$ ***
Signif. codes: 0	'***' 0.	. 201 '**' 0.	01 '*' 0	0.05 '.' 0.1

Residual standard error: 393.3 on 331 degrees of freedom Multiple R-squared: 0.7621, Adjusted R-squared: 0.7614 F-statistic: 1060 on 1 and 331 DF, p-value: < 2.2e-16

Equation of the regression line?
$\hat{y}=-5827.09+50.15 x$
Interpretation of b_{1} ?

Regression Output (Lines 63-65)

lm(formula = body_mass_g ~ flipper_length_mm, data = penguins)

Residuals:				
Min	1Q	Median	$3 Q$	Max
-1057.33	-259.79	-12.24	242.97	1293.89

Coefficients:

Residual standard error: 393.3 on 331 degrees of freedom Multiple R-squared: 0.7621, Adjusted R-squared: 0.7614 F-statistic: 1060 on 1 and 331 DF, p-value: < 2.2e-16

Equation of the regression line?
$\hat{y}=-5827.09+50.15 x$
Interpretation of b_{1} ?
We estimate that a onemillimeter longer flipper is associated with a 50.15-gram higher body mass, on average, in the population of penguins represented by this sample.

Regression Diagnostics

Checking Conditions

- Linearity: The relationship between the explanatory and response variables should be linear.
- Independence: The observations must be independent of one another. This does not mean that the response and explanatory variables are independent; rather, that the "individuals" from whom we collect information must be independent of each other.
- Nearly Normal Residuals: The residuals should come from a nearly-normal population of residuals.
- Equal (constant) variability: The variability of the residuals should not depend on where they are along the regression line.

Use the mnemonic "LINE"

Regression Diagnostics

```
plot(mod1, which = c(1, 2), add.smooth = FALSE, id.n = 0)
```


- Linearity
- Equal variance

- Nearly Normal

Regression Diagnostics

```
plot(mod1, which = c(1, 2), add.smooth = FALSE, id.n = 0)
```


Take a minute to describe your thoughts about the conditions on line 90 of your lab document.

Regression Inference

Conditions seem okay! Let's make some inference.

Residual standard error: 393.3 on 331 degrees of freedom Multiple R-squared: 0.7621, Adjusted R-squared: 0.7614 F-statistic: 1060 on 1 and 331 DF, p-value: < 2.2e-16

Q: At the population level, is there a relationship between penguin flipper length and body mass?

If not, then the slope of the "true" line should be zero.
$H_{0}: \beta_{1}=0$ vs. $H_{a}: \beta_{1} \neq 0$

Regression Inference

Conditions seem okay! Let's make some inference.

Call:

lm(formula = body_mass_g ~ flipper_length_mm, data = penguins)

Residual standard error: 393.3 on 331 degrees of freedom
Multiple R-squared: 0.7621, Adjusted R-squared: 0.7614
F-statistic: 1060 on 1 and 331 DF, p-value: < $2.2 \mathrm{e}-16$
(Intercept)
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
$\begin{array}{rrrr}872.09 & 310.29 & -18.93 & <2 \mathrm{e}-16 \\ 50.15 & 1.54 & 32.56 & <2 \mathrm{e}-16\end{array}$
Signif. codes: 0 '***' $0.001^{\prime * * '} 0.01^{\prime *}{ }^{\prime} 0.05{ }^{\prime} .{ }^{\prime} 0.1$ ' 1 1

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \text { vs. } H_{a}: \beta_{1} \neq 0 \\
& t=\frac{b_{1}-b_{1, \text { null }}}{S E_{b_{1}}}=\frac{50.15-0}{1.54}=32.56
\end{aligned}
$$

Regression Inference

Call:						
lm(formula = body_mass_g ~ flipper_length_mm, data = penguins)						
Residuals:						
Min 10	Median	30	Max			
-1057.33 -259.79	-12.24	242.97	1293.89			
Coefficients:						
Estimate Std. Error t value Pr(>\|t)					
(Intercept)	-5872.09	310.29	-18.93	$<2 \mathrm{e}-16$	***	
flipper_length_mm	50.15	1.54	432.56	$<2 \mathrm{e}-16$		
Signif. codes: 0	'***' 0	'**' 0.	. 01 '*' 0	. 05 ' . 0		
Residual standard error: 393.3 on 331 degrees of freedom						
Multiple R-squared: 0.7621, Adjusted R-squared: 0.7614						
F-statistic: 106	on 1 and	331 DF,	p -value:	< 2.2e-1		

Compute the p-value on line

 116.```
plotT(333 - 2, shadeValues = c(-32.56, 32.56),
 direction = "outside",
 xlim = c(-34, 34))
```

$\mathbf{t ( 3 3 1 )}$ Distribution

## Regression Inference

| Call: |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| lm(formula = body_mass_g ~ flipper_length_mm, data = penguins) |  |  |  |  |
| Residuals: |  |  |  |  |
| Min 1Q | Median | 3Q | Max |  |
| -1057.33 -259.79 | -12.24 | 242.97 | 1293.89 |  |
| Coefficients: |  |  |  |  |
|  | Estimate Std. Error t value $\operatorname{Pr}(>\mid \mathrm{t\mid})$ |  |  |  |
| (Intercept) | -5872.09 | 310.29 | -18.93 | $<2 \mathrm{e}-16$ *** |
| flipper_length_mm | 50.15 | 1.54 | 32.56 | $<2 e-16$ *** |
| Signif. codes: 0 | '***' 0.0 | 01 '**' 0. | 01 '*' 0 | 05 '.' 0.1 ' ' 1 |

Residual standard error: 393.3 on 331 degrees of freedom Multiple R-squared: 0.7621, Adjusted R-squared: 0.7614 F-statistic: 1060 on 1 and 331 DF, $p$-value: < 2.2e-16


$$
2 * \operatorname{pt}(-32.6, \mathrm{df}=331)
$$

[1] 2.336624e-105

## Regression Inference

| Call: |  |  |  |  | |
|---|---|---|---|---|---|
| lm(formula = body_mass_g ~ flipper_length_mm, data = penguins) |  |  |  |  |
| Residuals: |  |  |  |  |
| Min 10 | Median | 3Q | Max |  |
| -1057.33 -259.79 | -12.24 | 242.97 | 1293.89 |  |
| Coefficients: |  |  |  |  |
| Estimate Std. Error t value Pr(>\|t|) |  |  |  |  |
| (Intercept) | -5872.09 | 310.29 | -18.93 | $<2 \mathrm{e}-16$ *** |
| flipper_length_mm | 50.15 | 1.54 | 32.56 | $<2 \mathrm{e}-16$ *** |
| Signif. codes: 0 | '***' 0.0 | 001 '**' 0. | $01^{\prime}$ *' 0 | . 05 '.'0.1 ' ' 1 |

Residual standard error: 393.3 on 331 degrees of freedom Multiple R-squared: 0.7621, Adjusted R-squared: 0.7614 F-statistic: 1060 on 1 and 331 DF, $p$-value: < 2.2e-16

```
2 * pt(-32.6, df = 331)
```

[1] $2.336624 \mathrm{e}-105$


This is nonsense precision. Do not, under any circumstances, report this pvalue as-is. It is zero.

## Regression Inference

| Call: |  |  |  |  | |
|---|---|---|---|---|---|
| lm(formula = body_mass_g ~ flipper_length_mm, data = penguins) |  |  |  |  |
| Residuals: |  |  |  |  |
| Min 1Q | Median | 30 | Max |  |
| -1057.33 -259.79 | -12.24 | 242.97 | 1293.89 |  |
| Coefficients: |  |  |  |  |
|  | Estimate Std. Error t value Pr(>\|t|) |  |  |  |
| (Intercept) | -5872.09 | 310.29 | -18.93 | $<2 \mathrm{e}-16$ *** |
| flipper_length_mm | 50.15 | 1.54 | 32.56 | $<2 \mathrm{e}-16$ *** |
| Signif. codes: 0 | ***' 0. | 001 '**' 0. | $01^{\prime}{ }^{\prime \prime} 0$ | 05 '.' 0.1 ' ' 1 |

Residual standard error: 393.3 on 331 degrees of freedom Multiple R-squared: 0.7621, Adjusted R-squared: 0.7614 F-statistic: 1060 on 1 and 331 DF, $p$-value: < 2.2e-16

## Important Note

Notice that the p -value column in the output is labeled $\operatorname{Pr}(>|\mathrm{t}|)$ ?

- This is a two-sided p-value for the test that the coefficient is equal to zero.


## Confidence Intervals for Regression Parameters

Let's make a $95 \%$ confidence interval for each of $\beta_{0}$ and $\beta_{1}$.

$$
b_{1} \pm t^{*} \times \mathrm{SE}_{b_{1}}
$$

```
confint(mod1, level = .95)
```

|  | $2.5 \%$ | $97.5 \%$ |
| :--- | ---: | ---: |
| (Intercept) | -6482.47224 | -5261.71313 |
| flipper_length_mm | 47.12339 | 53.18314 |

Exercise: Verify these Cl's are correct using the regression output.

## Plotting a Regression Line

Our estimated regression line is

$$
y_{i}=-5827.09+50.15 x
$$

```
plot(body_mass_g ~ flipper_length_mm,
 data = penguins,
 ylab = "Body Mass (g)"
 xlab = "Flipper Length (mm)"
 main = "Penguin Body Mass vs. Flipper Leng
abline(mod1, col = "tomato", lwd = 2)
```



## Code Cheat Sheet ${ }^{\text {D }}$

## lm(formula, data)

- formula is a symbolic description of the model you want to fit: recall the syntax is response ~ explanatory.
- data is a data frame which contains the variables used in formula.


## Code Cheat Sheet

pt(q, df, lower.tail = TRUE)

- $q$ is the $x$-axis value you want to find an area related to
- df is the degrees of freedom of the $t$ distribution
- lower . tail determines whether pt () finds the area to the left or right of q. If lower.tail = TRUE (the default), it shades to the left. If lower.tail = FALSE, it shades to the right.


## Code Cheat Sheet

## qt(q, df, lower.tail = TRUE)

- $p$ is the probability or area under the curve you want to find an $x$-axis value for
- df is the degrees of freedom of the $t$ distribution
- lower. tail determines whether pt () finds the area to the left or right of q. If lower.tail = TRUE (the default), it shades to the left. If lower.tail = FALSE, it shades to the right.


## Code Cheat Sheet

## plotT()

- $d f$ refers to the degrees of freedom of the distribution to plot. You must provide this value.
- shadeValues is a vector of up to 2 numbers that define the region you want to shade
- direction can be one of less, greater, outside, or inside, and controls the direction of shading between shadeValues. Must be less or greater if shadeValues has only one element; outside or inside if two
- col. shade controls the color of the shaded region, defaults to "cornflowerblue"
- . . . lets you specify other graphical parameters to control the appearance of the normal curve (e.g., lwd, lty, col, etc.)


## Code Cheat Sheet

## plot(model, which, add.smooth, id.n) for lm() output

- model is the regression model (an lm object)
- which controls which diagnostic plots you want to see. We're typically interested in just the first 2 , so we'll set this to $\mathrm{c}(1,2)$.
- add. smooth controls whether or not to add a "smoother" to the residual plot. SET THIS TO FALSE.
- id. n controls the number of the most unusual points to identify in the plots. This is generally not helpful and confusing: SET THIS TO 0 .


## Code Cheat Sheet ${ }^{\text {D }}$

## confint(object, level)

- object is a fitted regression model (an lm object)
- level is the required confidence level, must be between 0 and 1.


## Lab Project

## Your tasks

- Complete the "Try It!" and "Dive Deeper" portions of the lab assignment by copy/pasting and modifying appropriate code from earlier in the document.


## How to get help

- Piazza!
- Email your lab instructor (not stats250-miller@umich.edu)


## Recap and Reminders

## What we learned:

Checking conditions for valid linear regression inference Using R to quickly perform hypothesis tests for regression parameters Using $R$ to create confidence intervals for regression parameters

| Task | Due Date | Submission |
| :--- | :--- | :--- |
| Lab 13 | Friday 12/4 8:00AM ET | Canvas |
| Homework 10 | Monday 12/7 8:00AM ET | course.work |

