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Motivating Example: Medical Cannabis Laws and Opioid Prescribing

• 4x increase in opioid prescribing in U.S.
from 1999-2012

• Opioid prescribing for chronic
non-cancer pain has played a
meaningful role

• Getting better: prescribing down since

2012, but still ~3x higher than 1999

Dart et al., (2015), New England Journal of Medicine.

https://www.cdc.gov/drugoverdose/rxrate-maps/index.html
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DoMedical Cannabis Laws Change Opioid Prescribing?

• Cannabis industry & advocates argue medical cannabis for chronic pain could be

a partial solution to opioid crisis via substitution

• Patients with chronic non-cancer pain are eligible to use cannabis under all

existing state medical cannabis laws

• Some evidence of substitution among adults with chronic non-cancer pain

Question: What are the effects of state medical cannabis laws on receipt of opioid

treatment among patients with chronic non-cancer pain?

Bicket, Stone, and McGinty, (2023), JAMA Network Open.
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Motivating Example: Medical Cannabis Laws and Opioid Prescribing

Previous studies have found mixed results, but have key methodological limitations:

1. No individual-level data

2. General population samples lead to policy endogeneity

Individual-level data lets us identify the population, but addsmethodological

complexity.
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Motivating Example: Medical Cannabis Laws and Opioid Prescribing

Our sample:

• 12 treated states that implemented a medical

cannabis law between 2012 and 2019 and do

not also have recreational cannabis laws

• 17 comparison states without medical or

recreational cannabis laws

Goal: Estimate the effect of implementing a

medical cannabis law on opioid prescribing

outcomes, relative to what would have happened

in the absence of treatment, among states that

implemented such a law (an ATT).
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Medical Cannabis Study: Study Periods
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Difference-in-Differences with Multiple Time Periods

Now, times t = {1, . . . , t∗, . . . , T}; t∗ first
measurement after treatment.

Alternative estimands:

ATT(t) = E
[
Yt(1)− Yt(0) | A = 1

]
, t ≥ t∗

ATTavg = E
[
Ȳ{t≥t∗}(1)− Ȳ{t≥t∗}(0) | A = 1

]
Strength of counterfactual parallel trends

assumption varies with choice of estimand.

Treated
Comparison
Assumed counterfactual for treated

Pre-Intervention t∗ Post-Intervention

ATT(t)
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Two-Way Fixed Effects Estimation

A common “modeling” approach to estimate ATT:

Ysit = β0,s + β1,t + β2Ast + εsit,

where

• Ast = 1 {state s treated at time t}
• β0’s are state fixed effects

• β1’s are time fixed effects

With 1 treated state or “simultaneous adoption”,

β̂2 ≡
(
Ȳtx{t≥t∗} − Ȳ

tx
{t<t∗}

)
−

(
Ȳctrl{t≥t∗} − Ȳ

ctrl
{t<t∗}

)
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Two-Way Fixed Effects under Staggered Adoption

Ysit = β0,s + β1,t + β2Ast + εsit

• Not all states implemented medical cannabis policy at the same time.

• Two-way fixed effects can yield a (very) biased overall effect estimate in this
setting.

• Problematic under time-varying treatment effects
• Estimator inadvertently adjusts for post-treatment information

Goodman-Bacon, (2021), Journal of Econometrics.
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Stacked Difference-in-Differences / Serial Trial Emulation
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Estimate and aggregate

Hernán and Robins, (2016), American Journal of Epidemiology; Ben-Michael, Feller, and Stuart, (2021), Epidemiology.
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Medical Cannabis Study: State Cohorts

Data are individual-level commercial health insurance claims from N = 583,820

unique individuals in 29 states.

For each treatment state, we build a cohort of individuals in that state and the control

states over the study period.

• Individuals included if they have a chronic non-cancer pain diagnosis in the

pre-law period and are continuously enrolled in commercial health insurance for

the full study period.
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Medical Cannabis Study: State Cohorts
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Medical Cannabis Study: State Cohorts
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Medical Cannabis Study: State Cohorts
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Medical Cannabis Study: State Cohorts
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Cohort Schematic
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Shared Control Individuals
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Handling Correlation Induced by Shared Control Indviduals

Goal: Improved inference on overall ATT averaged across treated units.

• ATT estimates remain unbiased under usual assumptions

• Failure to account for shared control individuals can lead to incorrect inference

Big Idea: Incorporate pairwise correlation between estimates into inverse-variance

weighted average

N.J. Seewald 15



Covariance between Diff-in-Diff Effect Estimates

With only one treated unit, we could estimate ATT for cohort C as

ÂTTC =
(
Ȳtxs,post − Ȳtxs,pre

)
−
(
Ȳctrls,post − Ȳctrls,pre

)
Assuming states are independent,

Cov
(
ÂTTC1 , ÂTTC2

)
= Cov

(
ȲctrlC1,post, Ȳ

ctrl
C2,post

)
+ Cov

(
ȲctrlC1,pre, Ȳ

ctrl
C2,pre

)
− Cov

(
ȲctrlC1,post, Ȳ

ctrl
C2,pre

)
− Cov

(
ȲctrlC1,pre, Ȳ

ctrl
C2,post

)
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Covariances with Shared Control Individuals
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ȲctrlCT,post, Ȳ
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When Does This Matter?

• Setting / simplifying assumptions:

• Exchangeable within-person correlation ρ
• Within-period correlation ϕ, between-period correlation ψ
• Interest is in ATTavg
• Individuals are independent of people who live in other states

Depends on:

• Number of measurement occasions in pre- and post-treatment periods
• Number of measurement occasions between law implementations
• Numbers of shared and unshared individuals in each control state

N.J. Seewald 18



Correlation Due to Shared Controls
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Inverse Variance Weighted Averaging

Estimating correlations (covariances) lets us construct a covariance matrix Σ for all

state-specific ATTs.

Then,

ÂTToverall =
1∑

s(1/σ
2
s )

∑
s

ÂTTs/σ
2
s

and

Var
(
ÂTToverall

)
=

1(
v⊤v

)2v⊤Σv,
where v⊤ =

(
1/σ1, . . . , 1/σS

)
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Medical Cannabis Study: Results
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implementation
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Medical Cannabis Study: Results

• In this case, accounting for

between-estimate correlation gives

smaller SE (here, by 18.5%)

• State-level policy evaluations are

(often) notoriously underpowered –

this could be a step in the right
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Conclusions

• Individual-level data is useful for identifying populations of interest in policy

evaluation, but introduces methodological complexity.

• When using individual-level data that might be shared across cohorts in stacked

diff-in-diff, it may be important to account for correlation between estimates

• A closed-form formula for induced correlation is available for select analyses

N.J. Seewald 23
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