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Motivating Example: The ENGAGE Study (McKay, et al., 2015)

• In treating alcohol- and cocaine-dependent patients,
there is a question as to how best to re-engage
individuals who do not engage in treatment.

• For these individuals, should we attempt to re-engage
them in their original treatment, or offer them a choice of
treatment modality?

• What do we do if that doesn’t work?
• This is a question about a sequence of treatments.
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Dynamic Treatment Regimens

Dynamic treatment regimens operationalize clinical
decision-making by recommending particular treatments to
certain subsets of patients at specific times. (Chakraborty and
Moodie, 2013)

No further
contact

MI-IOP

MI-PC

Engager

Continued
Non-Engager

• MI-IOP: 2 motivational interviews to re-engage patient in intensive outpatient
program

• MI-PC: 2 motivational interviews to engage patient in treatment of their
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Sequential, Multiple-Assignment Randomized Trials

A SMART is one type of randomized trial design that can be
used to answer questions at multiple stages of the
development of a high-quality DTR.

The key feature of a SMART is that some (or all) participants
are randomized more than once.
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Motivating Example: The ENGAGE Study (McKay, et al., 2015)
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Four Embedded DTRs
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Four Embedded DTRs
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Four Embedded DTRs
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Four Embedded DTRs
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A common primary aim in a SMART
is the comparison of two embedded DTRs using a continuous
outcome collected at the end of the study.
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Primary Aim
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A Model for a Continuous Longitudinal Outcome in ENGAGE
(Lu, et al., 2016)
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E(d)
[
Yt | X

]
:= µ(d)(Xi;η,γ)

= η⊤Xi + γ0

+ 1{t≤1} {γ1t+ γ2a1t}
+ 1{t>1} {γ1 + γ2a1
+ γ3(t− 1) + γ4(t− 1)a1
+ γ5(t− 1)a2
+ γ6(t− 1)a1a2

}
d = 1 d = 2 d = 3 d = 4

a1 1 1 -1 -1
a2 1 -1 1 -1
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“GEE-Type” Estimating Equations for Model Parameters
(Lu, et al., 2016)

0 =
N∑
i=1

∑
d

[
I(d)(Ad1i,Ri,A2i) ·W(Ri) · D(d)(Xi)⊤

·V(d) (α)−1 ·
(
Yi − µ(d)(Xi;η,γ)

)]
,

where

• d specifies an embedded DTR,
• I(d)(A1i,Ri,A2i) = 1{A1i=a1}

(
Ri + (1− Ri)1{A2i=a2}

)
• W (Ri) = 2

(
Ri + 2(1− Ri)

)
• µ(d)(Xi;η,γ) = E

[
Y(d) | Xi

]
• D(d)(Xi) = ∂

∂(η⊤,γ⊤)⊤
µ(d)(Xi;η,γ)

• V(d) (α) is a working model for Var
(
Y(d) − µ(d)(Xi;η,γ) | Xi

)
9



Goal:
Develop a sample size formula for SMARTs with a continuous,
repeated-measures outcome in which the primary aim is to
compare two embedded DTRs at the end of the study.
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Sample Size for an End-of-Study Comparison

N ≥
4
(
z1−α/2 + z1−β

)2
δ2

· (1− ρ2) · (2− r)

where

• δ = E[Y(d)2 − Y(d
′)

2 ]/

√(
Var(Y(d)2 ) + Var(Y(d

′)
2 )

)
/2

• α is the desired type-I error
• 1− β is the desired power
• ρ = cor(Yt, Yt′) for t ̸= t′

• r = P(Ri = 1)
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Sample Size for an End-of-Study Comparison

Table 1: Example sample sizes for comparison of two embedded
DTRs. r = 0.4, α = 0.05 (two-sided), and 1− β = 0.8.

Within-Person Correlation

Std. Effect Size ρ = 0 ρ = 0.3 ρ = 0.6

δ = 0.3 559 508 358
δ = 0.5 201 183 129
δ = 0.8 79 72 51
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Working Assumptions for Sample Size

1. Constrained conditional variances.
1.1 Var

(
Y(d)t | R(a1) = 0

)
,Var

(
Y(d)t | R(a1) = 1

)
≤ Var

(
Y(d)t

)
1.2 Cov(Y(d)t , Y(d)2 | R = 1) ≤ Cov(Y(d)t , Y(d)2 | R = 0) for all d and

t = 0, 1.

2. Exchangeable correlation structure.

Var
(
Y(d)

)
= σ2

1 ρ ρ

ρ 1 ρ

ρ ρ 1


for all d.
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Simulation Results

Target: 1− β = 0.8, α = 0.05 (two-sided)

Empirical power
δ P(R = 1) ρ N All satisfied 1.1 violated 1.2 violated

0.3 0.4 0 559 0.799 0.776 –
0.3 508 0.804 0.767 0.787
0.6 358 0.825 0.777 0.798
0.8 201 0.826 0.770 0.819

0.6 0 489 0.795 0.751 –
0.3 445 0.797 0.755 0.775
0.6 313 0.812 0.753 0.779
0.8 176 0.827 0.724 0.807

Bolded results are significantly different from 0.8 at the 0.05 significance
level.
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