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Motivating Example: The ENGAGE Study

In treating alcohol- and cocaine-dependent patients, there is
a question as to how best to re-engage individuals who do
not engage in treatment.

. McKay, J. R, et al. (2015). J. Consult. Clin. Psychol.
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Motivating Example: The ENGAGE Study

In treating alcohol- and cocaine-dependent patients, there is
a question as to how best to re-engage individuals who do
not engage in treatment.

For these individuals, should we attempt to re-engage them in
their original treatment, or offer them a choice of treatment
modality?

What do we do if that doesn’t work?

This is a question about a sequence of treatments.

. McKay, J. R, et al. (2015). J. Consult. Clin. Psychol.



Dynamic Treatment Regimens

Dynamic treatment regimens (DTRs) operationalize clinical
decision-making by recommending particular treatments to
certain subsets of patients at specific times.

+ MI-IOP: 2 motivational
Engagement No further interviews to re-engage patient
contact in intensive outpatient program

« MI-PC: 2 motivational interviews
Continued to engage patient in treatment
ponEnEasement of their choice.

. Chakraborty, B., and E. E. M. Moodie (2013). Statistical Methods for Dynamic Treatment Regimes.



Sequential, Multiple-Assignment Randomized Trials

A SMART is one type of randomized trial design that can be
used to answer questions at multiple stages of the
development of a high-quality DTR.



Sequential, Multiple-Assignment Randomized Trials

A SMART is one type of randomized trial design that can be
used to answer questions at multiple stages of the
development of a high-quality DTR.

The key feature of a SMART is that some (or all) participants
are randomized more than once.



Motivating Example: The ENGAGE Study
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Four Embedded DTRs in ENGAGE
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Four Embedded DTRs in ENGAGE
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A common primary aim in a SMART
is the comparison of two embedded DTRs using a continuous

outcome collected at the end of the study.



Primary Aim
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An Example Model for a Continuous Longitudinal Outcome in

ENGAGE (Lu et al. 2016)
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“GEE-Type” Estimating Equations for Model Parameters

N
I)(A,i, R, A )
0= oo Niy M2,
Z zd: { P(Ai = a.)P(Ayi = a | Aj = av, R;)

W(d) (A1,i7Ri7A2,i)

I

DOV (1) (¥, - u DX, )

where

- d specifies an embedded DTR,
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. Lu, X, et al. (2016). Stat. Med.




Goal:
For this analysis, develop a sample size formula for SMARTs

with a continuous longitudinal outcome in which the primary
aim is to compare, at end-of-study, two embedded DTRs
which recommend different first-stage treatments.
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Context:

* Three timepoints
- Randomization probability 0.5

« Exchangeable correlation structure

1



Sample Size for an End-of-Study Comparison

N> 4 <Z1a/;2+ Z1—B>2 N

where

. 5 =EYY - vgd’)]/\/(Var YY) 4 Var(Y8 )) /2 is the
targeted standardized effect size

+ «ais the desired type-I error

« 1— B is the desired power

s« p=cor(Ye,Yy) fort £t

o= P(R,’ = 1)
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Sample Size for an End-of-Study Comparison

4 (21—a/2 + 21—,6)2
52

Standard sample size for a 2-arm trial
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Sample Size for an End-of-Study Comparison
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Deflation for repeated measures
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Sample Size for an End-of-Study Comparison
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Inflation for SMART design
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Sample Size for an End-of-Study Comparison

Table 1: Example sample sizes for comparison of two embedded
DTRs. r = 0.4, @ = 0.05 (two-sided), and 1— 3 = 0.8.

Within-Person Correlation

Std. Effect Size p=0 p=0.3 p=0.6

0=0.3 559 508 358
=05 201 183 129
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Working Assumptions for Sample Size

1. Response is uncorrelated with products of first-stage
residuals. For any t; < t; < t*,

Cov <R(°1), (Ygid) — ,ugid)) (Y§.d) — Ng.d))) =0

/) /)

. Oetting, A. I, et al. (2011).
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Working Assumptions for Sample Size

1. Response is uncorrelated with products of first-stage
residuals. For any t; < t; < t*,

Cov <R(a1), (Ygid) — ,ugid)) (Y§.d) — Ng.d))) =0

/) /)

2. Constrained conditional covariances.
2
21 €[ (49 )" | o) = o] < var (1)

2.2 Cov(Y\D Vi | R = 1) < Cov(¥!), V) | R = 0) for all d and
t=o0,1.

. Oetting, A. I, et al. (2011).
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Working Assumptions for Sample Size

3. Exchangeable correlation structure.

Var <Y(d)) =02

T D =
T 2D
=T D

for all d.

15



Simulation Results

Target: 1 — 3= 0.8, @ = 0.05 (two-sided)

Empirical power

5 PR=1) »p N Allsatisfied 1violated 2.1violated 2.2 violated

0.3 0.4 0 559 0.801 0.778* 0.803 =

0.3 508 0.804 0.800 0.797 0.798

0.6 358 0.817 0.807 0.759* 0.788

0.8 201 0.836 0.809 = 0.792
0.6 0 489 0.804 0.736* 0.810 -

0.3 445 0.797 0.758* 0.795 0.780*

0.6 313 0.824 0.793 0.752* 0.770*

0.8 176 0.845 0.754* = 0.776*

* Result is significantly less than 0.8 at the 0.05 significance level.
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Working Assumptions for Sample Size

1. Response is uncorrelated with products of first-stage
residuals. Forany t; < t; < t*,

G (Rwo, (¥ - 1) (%9 - ug;ﬂ)) o

/)

Intuition: If this is not true, the relationship between, say v&‘”
and R might look like this:
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Two Definitions of Response
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