# Sample Size Considerations for Comparing Dynamic Treatment Regimens in a SMART with a Longitudinal Outcome

Nicholas J. Seewald

Department of Statistics University of Michigan

Joint with K.M. Kidwell, J.R. McKay, I. Nahum-Shani, T. Wu, D. Almirall

JSM 2019 30 July 2019

<sup>.</sup> McKay, J. R., et al. (2015). J. Consult. Clin. Psychol.

For these individuals, should we attempt to re-engage them in their original treatment, or offer them a choice of treatment modality?

<sup>.</sup> McKay, J. R., et al. (2015). J. Consult. Clin. Psychol.

For these individuals, should we attempt to re-engage them in their original treatment, or offer them a choice of treatment modality?

What do we do if that doesn't work?

<sup>.</sup> McKay, J. R., et al. (2015). J. Consult. Clin. Psychol.

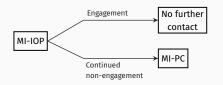
For these individuals, should we attempt to re-engage them in their original treatment, or offer them a choice of treatment modality?

What do we do if that doesn't work?

This is a question about a sequence of treatments.

<sup>.</sup> McKay, J. R., et al. (2015). J. Consult. Clin. Psychol.

**Dynamic treatment regimens** (DTRs) operationalize clinical decision-making by recommending particular treatments to certain subsets of patients at specific times.



- MI-IOP: 2 motivational interviews to re-engage patient in intensive outpatient program
- **MI-PC**: 2 motivational interviews to engage patient in treatment of their choice.

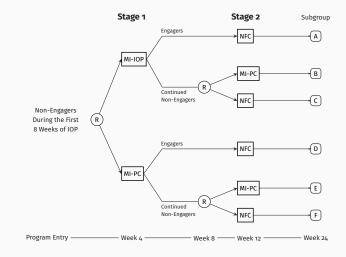
<sup>.</sup> Chakraborty, B., and E. E. M. Moodie (2013). Statistical Methods for Dynamic Treatment Regimes.

A **SMART** is one type of randomized trial design that can be used to answer questions at multiple stages of the development of a high-quality DTR.

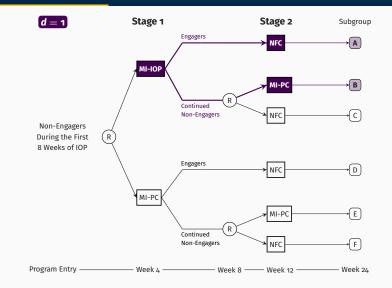
A **SMART** is one type of randomized trial design that can be used to answer questions at multiple stages of the development of a high-quality DTR.

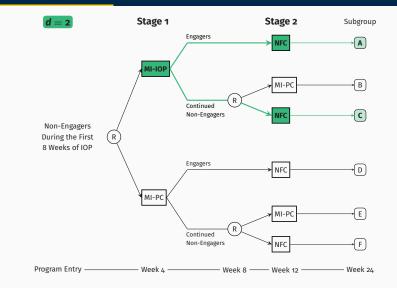
The key feature of a SMART is that some (or all) participants are randomized *more than once*.

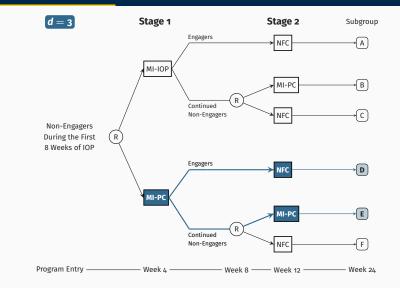
# Motivating Example: The ENGAGE Study

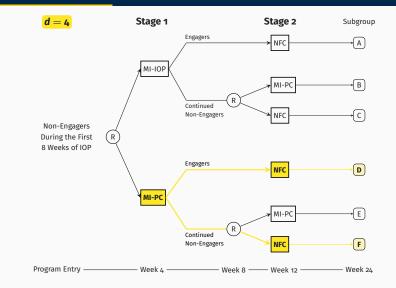


. McKay, J. R., et al. (2015). J. Consult. Clin. Psychol.



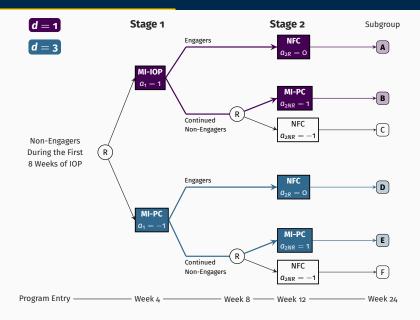




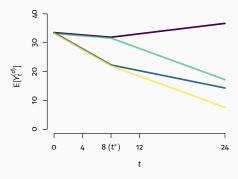


**A common primary aim in a SMART** is the comparison of two embedded DTRs using a continuous outcome collected at the end of the study.

# **Primary Aim**



# An Example Model for a Continuous Longitudinal Outcome in ENGAGE (Lu et al. 2016)



|                        | <i>d</i> = 1 | <b>d</b> = 2 | <b>d</b> = 3 | <b>d</b> = 4 |
|------------------------|--------------|--------------|--------------|--------------|
| <b>a</b> 1             | 1            | 1            | -1           | -1           |
| <b>a</b> <sub>2R</sub> | 0            | 0            | 0            | 0            |
| a <sub>2NR</sub>       | 1            | -1           | 1            | -1           |

$$\begin{split} \mathsf{E} \left[ \mathsf{Y}_{t}^{(d)} \mid \mathbf{X} \right] &:= \mu^{(d)}(\mathbf{X}_{i}; \eta, \gamma) \\ &= \eta^{\top} \mathbf{X}_{i} + \gamma_{\mathrm{o}} \\ &+ \mathbb{1} \{ t \leq t^{*} \} \left\{ \gamma_{1} t + \gamma_{2} a_{1} t \right\} \\ &+ \mathbb{1} \{ t > t^{*} \} \left\{ t^{*} \gamma_{1} + t^{*} \gamma_{2} a_{1} \\ &+ \gamma_{3} (t - t^{*}) + \gamma_{4} (t - t^{*}) a_{1} \\ &+ \gamma_{5} (t - t^{*}) a_{2NR} \\ &+ \gamma_{6} (t - t^{*}) a_{1} a_{2NR} \} \end{split}$$

8

# "GEE-Type" Estimating Equations for Model Parameters

$$0 = \sum_{i=1}^{N} \sum_{d} \left[ \underbrace{\frac{I^{(d)}(A_{1,i}, R_{i}, A_{2,i})}{P(A_{1,i} = a_{1})P(A_{2,i} = a_{2} \mid A_{1,i} = a_{1}, R_{i})}_{W^{(d)}(A_{1,i}, R_{i}, A_{2,i})} \cdot \mathbf{D}^{(d)}(\mathbf{X}_{i})^{\top} \cdot \mathbf{V}^{(d)}(\tau)^{-1} \cdot \left(\mathbf{Y}_{i} - \boldsymbol{\mu}^{(d)}(\mathbf{X}_{i}; \eta, \gamma)\right) \right],$$

#### where

- d specifies an embedded DTR,
- $W^{(d)}(A_{1,i}, R_i, A_{2,i}) = \mathbb{1}\{A_{1,i} = a_1\} (2R_i + 4(1 R_i)\mathbb{1}\{A_{2,i} = a_2\})$

• 
$$\mathbf{D}^{(d)}(\mathbf{X}_i) = rac{\partial}{\partial(\eta^{ op}, \gamma^{ op})^{ op}} \mu^{(d)}(\mathbf{X}_i; \eta, \gamma)$$

 $m{\cdot}$   $m{V}^{(d)}\left(m{ au}
ight)$  is a working model for  $m{V}$ ar  $\left(m{Y}^{(d)}-m{\mu}^{(d)}(m{X}_{i};m{\eta},m{\gamma})\midm{X}_{i}
ight)$ 

. Lu, X., et al. (2016). Stat. Med.

#### Goal:

For this analysis, develop a sample size formula for SMARTs with a continuous longitudinal outcome in which the primary aim is to compare, at end-of-study, two embedded DTRs which recommend different first-stage treatments.

### Context:

- Three timepoints
- Randomization probability 0.5
- Exchangeable correlation structure

$$N \geq \frac{4\left(Z_{1-\alpha/2} + Z_{1-\beta}\right)^2}{\delta^2} \cdot (1-\rho^2) \cdot (2-r)$$

#### where

• 
$$\delta = \mathsf{E}[\mathsf{Y}_2^{(d)} - \mathsf{Y}_2^{(d')}] / \sqrt{\left(\mathsf{Var}(\mathsf{Y}_2^{(d)}) + \mathsf{Var}(\mathsf{Y}_2^{(d')})\right) / 2}$$
 is the

- $\alpha$  is the desired type-I error
- 1  $-\beta$  is the desired power
- $\rho = cor(Y_t, Y_{t'})$  for  $t \neq t'$
- $r = P(R_i = 1)$

$$N \geq \underbrace{\frac{4\left(\mathbf{z}_{1-\alpha/2} + \mathbf{z}_{1-\beta}\right)^2}{\delta^2}}_{\text{Standard sample size for a 2-arm trial}} \cdot (1-\rho^2) \cdot (2-r)$$

where

• 
$$\delta = \mathsf{E}[Y_2^{(d)} - Y_2^{(d')}] / \sqrt{\left(\mathsf{Var}(Y_2^{(d)}) + \mathsf{Var}(Y_2^{(d')})\right) / 2}$$
 is the

- $\alpha$  is the desired type-I error
- 1  $\beta$  is the desired power
- $\rho = cor(Y_t, Y_{t'})$  for  $t \neq t'$
- $r = P(R_i = 1)$

$$N \geq \frac{4\left(Z_{1-\alpha/2} + Z_{1-\beta}\right)^2}{\delta^2} \cdot \underbrace{(1-\rho^2)}_{\text{Deflation for repeated measures}} \cdot (2-r)$$

#### where

• 
$$\delta = \mathsf{E}[\mathsf{Y}_2^{(d)} - \mathsf{Y}_2^{(d')}] / \sqrt{\left(\mathsf{Var}(\mathsf{Y}_2^{(d)}) + \mathsf{Var}(\mathsf{Y}_2^{(d')})\right) / 2}$$
 is the

- $\alpha$  is the desired type-I error
- $1 \beta$  is the desired power
- $\rho = cor(Y_t, Y_{t'})$  for  $t \neq t'$
- $r = P(R_i = 1)$

$$N \geq \frac{4\left(Z_{1-\alpha/2} + Z_{1-\beta}\right)^2}{\delta^2} \cdot (1-\rho^2) \cdot \underbrace{(2-r)}_{\text{Inflation for SMART design}}$$

#### where

• 
$$\delta = \mathsf{E}[Y_2^{(d)} - Y_2^{(d')}] / \sqrt{\left(\mathsf{Var}(Y_2^{(d)}) + \mathsf{Var}(Y_2^{(d')})\right) / 2}$$
 is the

- $\alpha$  is the desired type-I error
- 1  $-\beta$  is the desired power
- $\rho = cor(Y_t, Y_{t'})$  for  $t \neq t'$
- $r = P(R_i = 1)$

**Table 1:** Example sample sizes for comparison of two embedded DTRs. r = 0.4,  $\alpha = 0.05$  (two-sided), and  $1 - \beta = 0.8$ .

|                  | W          | Within-Person Correlation |          |  |  |
|------------------|------------|---------------------------|----------|--|--|
| Std. Effect Size | $\rho = 0$ | ho= 0.3                   | ho = 0.6 |  |  |
| $\delta=$ 0.3    | 559        | 508                       | 358      |  |  |
| $\delta = 0.5$   | 201        | 183                       | 129      |  |  |

# Working Assumptions for Sample Size

1. Response is uncorrelated with products of first-stage residuals. For any  $t_i \leq t_i \leq t^*$ ,

$$\mathsf{Cov}\left(\mathsf{R}^{(a_1)}, \left(\mathsf{Y}^{(d)}_{t_i} - \mu^{(d)}_{t_i}\right)\left(\mathsf{Y}^{(d)}_{t_j} - \mu^{(d)}_{t_j}\right)\right) = \mathsf{O}$$

<sup>.</sup> Oetting, A. I., et al. (2011).

# Working Assumptions for Sample Size

1. Response is uncorrelated with products of first-stage residuals. For any  $t_i \leq t_i \leq t^*$ ,

$$\operatorname{Cov}\left(R^{(a_1)}, \left(Y_{t_i}^{(d)} - \mu_{t_i}^{(d)}\right)\left(Y_{t_j}^{(d)} - \mu_{t_j}^{(d)}\right)\right) = 0$$

2. Constrained conditional covariances.

2.1 
$$E\left[\left(Y_{2}^{(d)}-\mu_{2}^{(d)}\right)^{2} \mid R^{(a_{1})}=0\right] \leq Var\left(Y_{2}^{(d)}\right)$$
  
2.2  $Cov(Y_{t}^{(d)},Y_{2}^{(d)}\mid R=1) \leq Cov(Y_{t}^{(d)},Y_{2}^{(d)}\mid R=0)$  for all  $d$  and  $t=0,1$ .

. Oetting, A. I., et al. (2011).

# 3. Exchangeable correlation structure.

$$\operatorname{Var}\left(\mathbf{Y}^{(d)}\right) = \sigma^{2} \begin{bmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{bmatrix}$$

for all d.

# **Target:** $1 - \beta$ = 0.8, $\alpha$ = 0.05 (two-sided)

|     |          | Empirical power |     |               |            |              |              |  |
|-----|----------|-----------------|-----|---------------|------------|--------------|--------------|--|
| δ   | P(R = 1) | ρ               | Ν   | All satisfied | 1 violated | 2.1 violated | 2.2 violated |  |
| 0.3 | 0.4      | 0               | 559 | 0.801         | 0.778*     | 0.803        | -            |  |
|     |          | 0.3             | 508 | 0.804         | 0.800      | 0.797        | 0.798        |  |
|     |          | 0.6             | 358 | 0.817         | 0.807      | 0.759*       | 0.788        |  |
|     |          | 0.8             | 201 | 0.836         | 0.809      | -            | 0.792        |  |
|     | 0.6      | 0               | 489 | 0.804         | 0.736*     | 0.810        | -            |  |
|     |          | 0.3             | 445 | 0.797         | 0.758*     | 0.795        | 0.780*       |  |
|     |          | 0.6             | 313 | 0.824         | 0.793      | 0.752*       | 0.770*       |  |
|     |          | 0.8             | 176 | 0.845         | 0.754*     | -            | 0.776*       |  |

\* Result is significantly less than 0.8 at the 0.05 significance level.

# Funding

This work was supported by the following awards from the National Institutes of Health: R01DA039901, P50DA039838, R01HD073975, R03MH097954, P01AA016821, RC1AA019092, U54EB020404. The content of this presentation is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.



https:\\nickseewald.com

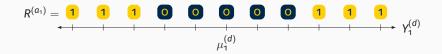


# Working Assumptions for Sample Size

1. Response is uncorrelated with products of first-stage residuals. For any  $t_i \leq t_j \leq t^*$ ,

$$\operatorname{Cov}\left(R^{(a_1)},\left(Y_{t_i}^{(d)}-\mu_{t_i}^{(d)}\right)\left(Y_{t_j}^{(d)}-\mu_{t_j}^{(d)}\right)\right)=0$$

*Intuition:* If this is not true, the relationship between, say  $Y_1^{(d)}$  and *R* might look like this:



# Two Definitions of Response

$$R^{(a_{1})} = \mathbb{1}\left\{\left(Y_{1}^{(d)}\right)^{2} > 4.7\right\}$$

$$R^{(a_{1})} = \mathbb{1}\left\{Y_{1}^{(d)} > 0.7\right\}$$

$$R^{(a_{1})} = \mathbb{1}\left\{Y_{1}^{(d)} > 0.7\right\}$$

$$R^{(a_{1})} = \mathbb{1}\left\{X_{1}^{(d)} > 0.7\right\}$$

$$R^{(a_{1})} = \mathbb{1}\left\{R^{(a_{1})} = \mathbb{1}\right\}$$

$$R^{(a_{1})} = \mathbb{1}\left\{R^{(a_{1})} = \mathbb{1}\right\}$$