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Motivating Example: Medical Cannabis Laws and Opioid Prescribing

- 4x increase in opioid prescribing in U.S. from 1999-2012

+ Opioid prescribing for chronic non-cancer pain has played a meaningful role

- Getting better: prescribing down since 2012, but still ~3x higher than 1999

Dart, R. C. et al. (2015). New England Journal of Medicine.
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Motivating Example: Medical Cannabis Laws and Opioid Prescribing

- 4x increase in opioid prescribing in U.S. from 1999-2012

+ Opioid prescribing for chronic non-cancer pain has played a meaningful role

- Getting better: prescribing down since 2012, but still ~3x higher than 1999

- Cannabis is a potentially effective treatment for chronic non-cancer pain, but
evidence is limited.

- Patients with chronic non-cancer pain are eligible to use cannabis under all
existing state medical cannabis laws

Aim: Examine the effects of state medical cannabis laws on receipt of opioid and
non-opioid treatment among patients with chronic non-cancer pain

Dart, R. C. et al. (2015). New England Journal of Medicine.
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Motivating Example: Medical Cannabis Laws and Opioid Prescribing

Previous studies have found mixed results, but have key methodological limitations:

1. General population samples, and no individual-level data to identify individuals
with chronic non-cancer pain

2. Policy endogeneity not addressed
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Motivating Example: Medical Cannabis Laws and Opioid Prescribing

Previous studies have found mixed results, but have key methodological limitations:

1. General population samples, and no individual-level data to identify
individuals with chronic non-cancer pain

2. Policy endogeneity not addressed

Individual-level data lets us identify the population, but adds methodological
complexity in stacked difference-in-differences: existing methods assume
comparison groups don’t change across analyses.
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Motivating Example: Medical Cannabis Laws and Opioid Prescribing

Our sample:

- 12 treated states that implemented a medical
cannabis law between 2012 and 2018 and do
not also have recreational cannabis laws

- 17 comparison states without medical or

recreational cannabis laws

B Treated
I Ccontrol
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Motivating Example: Medical Cannabis Laws and Opioid Prescribing

Our sample:

- 12 treated states that implemented a medical
cannabis law between 2012 and 2018 and do
not also have recreational cannabis laws

- 17 comparison states without medical or

recreational cannabis laws

B Treated
I Ccontrol

Goal: Estimate the effect of implementing a
medical cannabis law on opioid prescribing
outcomes in each treatment state, relative to what ——
would have happened in the absence of treatment.
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Difference-in-Differences: A Conceptual Introduction

- Compare change in outcome over time

between treated and comparison groups

- Under assumption that treated group
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would look like comparison group in
absence of treatment, can estimate
causal treatment effect

+ This is called the (counterfactual)
parallel trends assumption

(Causal)
Treatment
Effect

—e— Treated
-®- Comparison
Assumed counterfactual for treated

r 1
Pre-Intervention Post-Intervention



Difference-in-Differences: A Conceptual Introduction

Goal is to estimate the average treated effect
among the treated:

ATT(t) = E [Y¢(1) — Y¢(0) | A =1].
Under counterfactual parallel trends:
ATT(t) = (E [Ye|A=1] —E[Yy |A= 1])
—(E[Yt|A:O] —E vy |A:O]>

for t’ in the pre period, t in the post.
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Difference-in-Differences: A Conceptual Introduction

- Using standard diff-in-diff to estimate an

overall treatment effect under “staggered
adoption” is problematic

- We’'ll use standard diff-in-diff machinery

to estimate a separate ATT for each
treated state, then pool to get an average
ATT.

Goodman-Bacon, A. (2021). Journal of Econometrics.
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Medical Cannabis Study: Study Periods
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Medical Cannabis Study: State Cohorts

Data are individual-level commercial health insurance claims.

For each treatment state, we build a cohort of individuals in that state and the control
states over the study period.

- Individuals included if they have a chronic non-cancer pain diagnosis in the
pre-law period and are continuously enrolled in commercial health insurance for
the full study period.
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Medical Cannabis Study: State Cohorts
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Medical Cannabis Study: State Cohorts
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Medical Cannabis Study: State Cohorts
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Medical Cannabis Study: State Cohorts
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Shared Control Individuals

- Individuals in control states might appear in multiple cohorts.
« “Ctrl 1”is in CT, MN, NY cohorts, but “Ctrl 2” is in MN cohort only

This induces correlation between treatment effect estimates for different cohorts!

CT Study Period

soq

Ctrl 1

Ctrl 2

2010 2013 2016 2019
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Shared Control Individuals

One cohort:

= cT cT
tl ttx tT

Treated —— Control

N.J. Seewald 10



Shared Control Individuals

Two cohorts:

CT CcT CT
t1 ttx tT

cT =
= MN
Treated
Afiat] MN MN CT
— Disjoint Control tl ttx tT

— — Shared Control
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Handling Correlation Induced by Shared Control Indviduals

Goal: Estimate overall ATT, averaged across treated states.

- Correlation only an issue when pooling effect estimates
- Approach is for individual-level data

- Big Idea: Estimate pairwise correlation between estimates, then take
inverse-variance weighted average.
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A Common Approach to Diff-in-Diff

With only one treated unit, we could estimate ATT for state s as
ATT vt vt yctrl vctrl
ATT(S) = (Ys)jpost - stpre) - <y§,;ost - Yg,[;re)
Assuming states are independent,

Cov (ATT(5), ATT(S')) = Cov (Ve Veiiag ) + Cov (Ve Va1,

s,posty T's’ post s,pres 's’ pre

— Cov (Veoue, Ve ) = Cov (Ve Vel )

s,post’ ''s’ pre s,pre’ 's/,post
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Covariances with Shared Control Individuals

cT cT cT
t e tr
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Post/Pre = Post/Post |- -/Post
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Shared Control

vetrl vctrl v v V.
Cov ( CT,post» YﬁANljpost> = Cov (YCT Disjoint + yPost/Pre + YPost/Post>
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When Does This Matter?

- Correlation between effect estimates depends on:
- duration of pre- and post-treatment periods
- delay between study period start times
«+ proportion of shared control individuals
- within- and between-person correlations
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When Does This Matter?

- In limited simulations, we see small but noticeable correlation between effect

estimates (~10-15%)
- Simple pre/post setting with 1-period unit gap in start times, all individuals are
independent, exchangeable within-person correlation

- 10%+ correlations only with large proportion of shared control individuals
(> 75%)

- With two cohorts and when variance of estimates is constant, correlation
increases variance of overall estimate by factor of (1 4 p) relative to if estimates

were independent.

Ignoring this correlation leads to artificially small standard errors!

p is the correlation between estimates
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Conclusions

- Individual-level data is useful for identifying populations of interest in policy
evaluation, but introduces methodological complexity.

- When using individual-level data that might be shared across cohorts in stacked
diff-in-diff, it may be important to account for correlation between estimates

- A closed-form formula for induced correlation is available for select analyses

- Paper availiable on ArXiv soon!
- Follow me on Twitter for updates: @nickseewald
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